
Readings on ML and High-Dimensional Methods

Manu Navjeevan

January 2, 2021

Contents

1 Generalized Random Forests; Susan Athey, Julie Tibshirani, Setfan Wager (AOS, 2018) 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Generalized Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Splitting to Maximize Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 The Gradient Tree Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Asymptotic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 A Central Limit Theorem for Generalized Random Forests . . . . . . . . . . . . . . . 8

1.4 Confidence Intervals via the Delta Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.1 Consistency of the Bootstrap of Little Bags . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Deep Learning in NPR Benedikt Bauer and Michael Kohler (AOS, 2019) 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Rate of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Curse of dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Nonparametric Regression Estimation by Multilayer Feedforward Neural Networks . . . . . . 14
2.3 Application to Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 NPR Using Deep Neural Networks Johannes Schmidt-Hieber (ArXiv, 2017) 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Mathematical Definition of Multilayer Neural Networks . . . . . . . . . . . . . . . . . . . . . 20
3.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Central Limit Theorems and Bootstrap in High Dimensions Victor Chernozhukov, Denis

Chetverikov, Kengo Kato (AoP 2017) 26
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 High-dimensional CLT for hyperrectangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 High-dimensional CLT for simple and sparsely convex sets . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Simple Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Sparsely Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Sparse Principal Component Analysis Hui Zou, Trevor Hastie, Robert Tisbirani (JCGS,

2006) 31
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Motivation and Details of SPCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 Direct Sparse Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Sparse Principal Components Based on the SPCA Criterion . . . . . . . . . . . . . . . 32

1



CONTENTS

6 Deep IVJason Hartford, Greg Lewis, Kevin Leyton Brown , Matt Taddy 34
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Counterfactual Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Estimating and Validating DeepIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3.1 Optimization for DeepIV Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Causal Forests Stegan Wager and Susan Athey (JASA, 2018) 37
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.2 Causal Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.2.1 Treatment Estimation with Unconfoundedness . . . . . . . . . . . . . . . . . . . . . . 37
7.2.2 From Regression Trees to Causal Forests . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2.3 Asymptotic Inference with Causal Forests . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2.4 Honest Trees and Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 C-alpha Tests and Their Use Jerzy Neyman, (IJS, 1979) 40
8.1 General Idea of C-alpha Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2



1 Generalized Random Forests; Susan Athey, Julie Tibshirani, Setfan Wager (AOS, 2018)

1 Generalized Random Forests; Susan Athey, Julie Tibshirani, Setfan Wager (AOS, 2018)

This paper can be found on ArXiv here.

1.1 Introduction

• Random Forests first introduced by Breiman (2001)

• Used for conditional mean estimation. Given a data generating distribution for (Xi, Yi) ∈ X×R, want
to estimate

µ(x) = E[Y |Xi = x] (1)

• Paper extends this to a flexible method for estimating any quantity θ(x) defined via local moment
conditions. Specifically, given data (Xi, Oi) ∈ X × O, we want forest based estimates of θ(x) defined
by a local moment condition of the form

E[ψθ(x),ν(x)(Oi)|Xi = x] = 0, for all x ∈ X (2)

where ψ(·) is a score function and ν(·) is an optional nuisance parameter.

– For example, if we model the distribution ofOi conditional onXi to have a density fθ(x),ν(x)(·) then
the moment condition one with ψ = ∇ log fθ(x),ν(x)(·) ideintifies the local maximum likelihood

– Substantive application involved heterogeneous treatment effect estimation with IV

• Aim is to build a famly of non-parametric estimators that inherit desirable empirical properties of
regression forests: stability, ease of use, flexible adaptation to different functional forms

• Regression forests typically understood as ensemble methods

µ̂(x) = B−1
B∑
b=1

µ̂b(x)

because individual trees have low bias but high variance, this averaging stabilizes predictions.

This method may not work as well when we are given moment conditions as in 2. Noisy solutions to
moment equations are generally biased and averaging would do nothing to alleviate the bias.

• Cast forests as a type of adaptive locally weighted estimatior that first uses a forest to calculate a
weighted set of neighbors for each test point x and then solves a plug-in version of 2 using these
neighbors.

– Previously advocated by Hotheorn et. al (2004) in the context of survival analysis and by Mein-
shausen (2006) for quantile regression

– For conditonal mean estimation the averaging and weighting views of forests are equivalent, for
moment conditions the weighting based perspective proves more effective

• Bulk of this paper is devoted to theoretical analysis of generalized random forests

1.1.1 Related Work

• Idea of local maximum likelihood has a long history. Core idea: when estimating parameters at a
particular value of covariates, a kernel weighting function is used to place more weight on nearby
observations in the covariate space. Paper replaces the kernel weighting function with forest based
weights.

– Weights dervied from the fraction of trees in which an observation appears in the same leag as
the target value of the covariate vector.
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– If the covariate space has more than a few dimensions kernel methods can suffer from curse of
dimensionality.

1.2 Generalized Random Forests

• In the standard classification or regresion forests proposed by Breiman (2001), prediction for a partic-
ular point x is determined by averaging predictions across an ensemble of different trees.

Suppose that we have n independent and identically distributed samples, indeced i = 1, . . . , n. For each
sample, access to an observable quantity Oi that encodes information relevant to estimation θ(·), along with
a set of auxilary covariates Xi.

• In the case of NPR; Oi = {Yi}, Yi ∈ R, though in general it may contain richer information.

– In the case of treatment effect estimation weith exogeneous treatment assignment, Oi = {Yi,Wi}
where Wi represents the treatment assignment.

Given this type of data, the goal is to estimation solutions to local estimation equations of the form
E[ψθ(x),νx(Oi)|Xi = x] = 0 (Eq. 2), for all x ∈ X. We care about θ(x) and ν(x) is a nuisance parame-
ter.

One approach: Define some similarity weights αi(x) that measure the relevance of the i-th training example
to fitting θ(·) at x and then fit the target of interest via an empirical version of the estimation equation

(
θ̂(x), ν̂(x)

)
∈ arg min

θ,ν


∥∥∥∥∥∥
n∑
i=1

αi(x)ψθ,ν(Oi)

∥∥∥∥∥∥
2

 (3)

If the expresion has a unique root we can say that the estimators “solve” eq. 3. Weights used in the above
equations are traditionally obtained via a deterministic kernel function, perhaps with an adaptively chosen
bandwith parameter. This method of choosing weights suffers from curse of dimensionality. This paper
uses forest-based algorithms to adaptively learn better, problem specifc, weights, αi(x)) that van be used in
conjunction with eq. 3.

1. Grow a set of B trees indicated by b = 1, . . . , B and, for each such tree, define Lb(x) as the set of
training examples falling in the same “leaf” as x.

2. Define the weights as the frequency with with the i-th training example falls into the same leaf as x:

αbi(x) =
1{Xi ∈ Lb(x)}
|Lb(x)|

(4)

These weights sum to 1 and define the forest based adaptive neighborhood of x.

Construction of the trees and the “neighbor” sets Lb(x) require some subtleties. In particular, construction
will rely on both subsampling and specific form of sample splitting to achieve consistency.

• For the special case of regression trees, the weighting based definition of a random forest is equivalent
to the standard “average of trees” perspective taken in Breiman (2001)

1.2.1 Splitting to Maximize Heterogeneity

Seek trees that, when combined into a forest, induce weights αi(x) that lead to good estimates of θ(x). Ran-
dom forests use recursive partitioning on subsamples to generate these weights αi(x). Algorithm considered
in the paper mimics Breiman (2001) as closely as possible, while tailoring splitting to focus on heterogeneity
in θ(x).

Use a greedy algorithm to look for splits. Each split starts with a parent node P ⊂ X. Given a sample J,
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define (θ̂P , ν̂p)(J) as (
θ̂P , ν̂P

)
∈ arg min

θ,ν


∥∥∥∥∥∥

∑
{i∈J,Xi∈P}

ψθ,ν(Oi)

∥∥∥∥∥∥
2

 1 (5)

This contrasts to (4) because there is no weighting. Would like to divide P into two children, C1, C2 ⊂ X

using an axis-aligned cut2 to improve the accuracy of our θ estimates as much as possible. Formally, this
means seeking to minimize

err(C1, C2) =
∑
j=1,2

P
[
X ∈ Cj |X ∈ P

]
E
[(
θ̂Cj − θ(X)

)2
|X ∈ Cj

]

where θ̂Cj (J) are fit over children Cj as in eq. 5. Expectations are taken over both the randomness in θ̂Cj (J)
and a new test point X. This is to say, the err function is the “true” function we want to minimize.

Many standard regression tree implementations choose splits by minimizing prediction error of the node. This
corresponds to err(C1, C2) with plug in estimators from the training sample. Athey and Imbens (2016) study
sample-splitting trees to estimate a treatment effect. They propose an unbiased, model-free (nonparametric)
estimate of err(C1, C2) using an overfitting penalty as in Mallows (1973). In the general moment condition
setting as defined by 2 this may not work. If θ(x) is defined only by a moment condition, then we do
not in general have access to an unbiased, model free estimate of the criterion err(C1, C2). The following
proposition tries to address this.

Proposition 1. Suppose that the basic assumption detaled later in Section 3 hold, and that the parent node
P has a radius smaller than r > 0. We write nP = |{i ∈ J : Xi ∈ P}| for the number of observations in the
parent and nCj for the number of observations in each child and define

∆(C1, C2) := nC1nC2/n2P

(
θ̂C1(J)− θ̂C2(J)

)2
(6)

where θ̂C1
, ˆθC2

are the solutions to the estimating equation computer in the children, following eq. 5. Then,
treating the child notes C1, C2 as well as the corresponding counts nC1

, nC2
as fized, and assuming that

nCi � r−2 we have that
err(C1, C2) = K(P )− E[∆(C1, C2)] + o(r2)

where K(P ) is a deterministic term that measures the purity of the parent node that does not depend on how
the parent is split, and the o-term incorporates terms that depend on sampling variance.

Motivated by this observation, paper considers splits that make the above ∆-criterion in eq. 6 large.

1.2.2 The Gradient Tree Algorithm

Above discussion provides conceptual guidance on how to pick good splits. But actually optimizing the
criterion ∆(C1, C2) over all possible axis-aligned cuts while also solving for (θ̂, ν̂) at each leaf can be com-
putationally expensive. To avoid the issue, paper proposes optimizing an approximate criterion ∆̃(C1, C2)

using gradient based approximations for (θ̂C1
, θ̂C2

). For each child C, use θ̃C ≈ θ̂C as follows: First, compute
AP as any consistent estimate for the gradient of the expectation of ψ function; i.e, AP → ∇E[ψθ̂P ,ν̂P (Oi)].
Then, set

θ̃ = θ̂ − 1

|{i : Xi ∈ C}|
∑

{i:Xi∈C}

ξTA−1P ψθ̂P ,ν̂P (Oi) (7)

1Minimize the L2 norm because we want the moment condition to be as close to zero as possible
2Axis-aligned means that the cut considers only one variable at a time. See link for a visual representation
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θ̂P and ν̂P are obtained by solving eq. 5 once in the parent node and ξ is a vector that picks out the θ
coordinate from the vector (θ, ν). When ψ is itself continuously differentiable we use

AP =
1

|{i : Xi ∈ P}|
∑

{i:Xi∈P}

∇ψθ̂,ν̂(Oi) (8)

Algorithim’s recursive partitioning scheme reduces to alternatively applying the following two steps. First,
in a labeling step, compute θ̂P , ν̂P and the derivative matrix A−1P on the parent data as in eq. 5, and use
them to get the psuedo-outcomes

ρi = −ξTA−1P ψθ̂P ,ν̂P (Oi) ∈ R (9)

Next in a regression step, run a standard CART regression split on the outcome ρi. Specifically, we split
P into two axis-aligned children C1 and C2 such as to maximize the criterion

∆̃(C1, C2) =

2∑
j=1

1

|{i : Xi ∈ Cj}|

 ∑
{i:Xi∈Cj}

ρi

2

(10)

Once the regression step has been executed, relabel observations in each child by solving the estimating
equation, and continue on recursively. 3

• In the simplest case of least square regression (mean regression), with ψθ(x)(Y ) = Y −θ(x) the labeling
step in eq. 9 doesn’t change anything. The second step in maximizing eq. 10 corresponds to the usual
way of making splite in Breiman (2001).

– Special structure of the problem considered in this paper is encoded into eq. 9.

This approach is expected to provide more consistent computational performance than optimizing 6 at each
step. Computation in growing a tree is typicall dominated by the split-selection step, so it is critical for this
step to be implemented as effeciently as possible. Conversely the labeling step is only solved once per node,
so is less performance sensitive. The algorithms for doing this are specified below:

(a) Algorithm 1 (b) Algorithm 2

Figure 1: Algorithms for growing generalized random forests

In contrast to using a regression splitting criterion as in 10, which only requres a single pass over the data in
the parent node, directly optimizing the original criterion in eq. 6 may require optimizing at every possible
candidate split. This sort of gradient based approximation also underlies other popular statistical algorithms,
including gradient boosting (Friedman, 2001) and model based recursive partitioning algorithm of Zeileis,
Hothorn, and Hornik (2008).

Paper can verify that the error from using the approcimate criterion ∆̃ instead of the exact ∆-criterion is
within the tolerance used to motivate the ∆-criterion in Proposition 1, thus suggesting that use of it may

3This whole section is really going over the recursive step of the algorithm
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not result in too much ineffeciency. Consistent estimates of AP can, in general, be derived directly, without
relying on the proposition below

Proposition 2. Under the conditions of Proposition 1, if |AP − ∇E[ψθ̂P ,ν̂P (Oi)|Xi ∈ P ]|→P 0, then

∆(C1, C2) and ∆̃(C1, C2) are approximately equivalent in that

∆̃(C1, C2) = ∆(C1, C2) + oP

(
max{r2, 1/nC1 , 1/nC2}

)
Now, given a practical splitting scheme for growing individual trees, we want to grow a forest that allows
for consistent estimation of θ(x) using 5 using the forest weights in eq. 4. Each tree will provide small,
relevant neighborhoods for x that will lead to noisy estimates of θ(x); then we may hope that forest based

aggregation will provide a single larger but still relevant neighborhood of x that yields stable estimates θ̂(x).
Rely on two conceptual ideas that have proven to be succesful in the literature on forest-based least-squares
regression. Training trees on subsamples of the data nd a subsampling splitting technique called “honesty”.

1.3 Asymptotic Analysis

Aim of this section is to establish asymptotic Gaussianity of the θ̂(x) and of providing tools for statistical
inference about θ(x). The covariate space and the parameter space are both subsets of Euclidean space.
Specifically X = [0, 1]p and (θ, ν) ∈ B ⊂ Rk for some p, k > 0 and B is a compact subset.1 Moreover, we
assume that X has a density that is bounded away from 0 and from above. This is a weaker requirement in
the forest prediction space since trees and forests are invariant to monotone rescaling of the features.

Some practically interesting cases, such as quantile regression involve discontinuous score functions ψ, which
complicates analysis. Here we assume that the spected score function

Mθ,ν(x) := E[ψθ,ν(O)|X = x] (11)

varies smoothly in the parameters, even though ψ itself may be discontinuous. For example, with quantile
regression ψθ(Y ) = 1({Y > θ})− (1− q) is discontinuous in q and Y , but Mθ(x) = P[Y > θ|X = x]− (1− q)
is smooth whenever Y |X = x has a smooth density. We add the following assumptions

Assumption 1. (Lipschitz x-signal) For fixed valued of (θ, ν) we assume that Mθ,ν(x) is Lipschitz contin-
uous in x.

Assumption 2. (Smooth identification) When x is fixed, assume that the M -function is twice continuously
differentiable in (θ, ν) with a uniformly bounded second derivative, and that V (x) := Vθ(x),ν(x)(x) is invertible

for x ∈ X, with Vθ,ν(x) := ∂
∂(θ,ν)Mθ,ν(x)

∣∣∣∣
θ(x),ν(x)

.

Assumption 3. (Lipschitz (θ, ν)-variogram) The score functions ψθ,ν(Oi) have a continuous covariance
structure. Writing γ for the worst-case variogram and ‖·‖F for the Frobenius norm, then for some L > 0

γ

((
θ
ν

)
,

(
θ′

ν′

))
≤ L

∥∥∥∥∥
(
θ
ν

)
−
(
θ′

ν′

)∥∥∥∥∥
2

γ

((
θ
ν

)
,

(
θ′

ν′

))
:= sup

x∈X
{‖Var[ψθ,ν(Oi)− ψθ′,ν′(Oi)|Xi = x]‖F }

Assumption 4. (Regularity of ψ) The ψ-fucntions can be written as ψθ,ν(O) = λ(θ, ν;Oi) + ζθ,ν(g(Oi))
such that λ is Lipschitz-continuous in θ, ν and g : Oi → R is a univariate summary of Oi, and ζθ,ν : R→ R
is any family of monotone and bounded functions

1This seems to restrict θ to be semiparametric. I don’t think that is the right interpretation though. θ(x) can still be an
arbitrary function taking values on a the real line.

7



1 Generalized Random Forests; Susan Athey, Julie Tibshirani, Setfan Wager (AOS, 2018)

Assumption 5. (Existence of solutions) We assume that, for any weights αi with
∑
αi = 1, the es-

timating equation returns a minimizer (θ̂, ν̂) that at least approximately solves the estimating equation:
‖
∑n
i=1 αiψθ̂,ν̂(Oi)‖2≤ C max{αi} for some constant C ≥ 0.

Assumption 6. (Convexity) The score function ψθ,ν(Oi) is a negative sub-gradient of a convex function,
and the expected score Mθ,ν(Xi) is the negative gradient of a strongly function.

Assumption 3 holds trivially if ψ is Lipschitz in the parameters. Assumption 4 is used to show that a certain
empirical process is Donsker. The first 5 assumptions deal with local properties of the estimating equation
and can be used to control the behavior of (θ̂(x), ν̂(x)) in neighborhoods of the population parameter value
(θ(x), ν(x)). The 6th assumption garuntees consistency.

Consistency and Gaussianity results require using some specific settings for the trees from Algorithm 1. In
particular, require that all trees are honest and regular in the sense of Wager and Athey (2018), as follows.
In order to satisfy the minimum split probability condition below, our implementation relies on the device
of Denil, Matheson and De Freitas (2014), whereby the number splitting variables considered at each step of
the algorithm is random. Specifically, try min{max{Poisson(m), 1}, p} variables at each step, where m > 0
is a tuning parameter.

Specification 1. All trees are symmetric in that their output is invariant to permuting the indices of training
examples; make balanced splits in the sense that every split puts at least a fraction ω of the observations in
the parent node into each child, for some ω > 0; and are randomized in such a way that, at every split, the
probability that the tree splits on the j-th feature. is bounded from below by π > 0. The forest is honest
and built with subsample size satisfying s/n→ 0 and s→∞.

These assumptions hold trivially under some weak assumptions for least squares and quantile regression.

1.3.1 A Central Limit Theorem for Generalized Random Forests

Now ready for asymptotic results. Note that regression forests are averages of regression trees grown over
sub-samples and were thus be analyzed as U -statistics (Hoeffding, 1948). Unlike regression forest predictions,

however, the parameter estimates θ̂(x) from generalized random forests are not averages of estimates made

by different trees. Instead, we obtain θ̂ by solving a single weighted moment equation as in eq. 3. So existing
proof strategies do not apply in thi setting.

Tackle this problem using method of influence functions as described by Hampel (1974). In particular, we
are motivated by the analysis of Newey (1994a). Core idea is to derive a sharp, linearized approzimation to
the local estimatior, and then to analyze the linear approximation instead. Let ρ∗i (x) denote the influence
function on the i-th observation with respect to the true parameter value, θ(x)

ρ∗i (x) := −ξTV (x)−1ψθ(x),ν(x)(Oi)

Then, given any set of forest weights αi(x) used to define the generalized random forest estimate θ̂(x) by
solving (3) define a pseudo-forest

θ̃∗(x) := θ(x) +

n∑
i=1

αi(x)ρ∗i (x) (12)

used to approximate θ̂(x). θ̃∗(x) is the output of an infeasible regression forest with weights αi(x) and
outcomes θ(x) + ρ∗i (x). The upshot is that this is a U -statistic, which we know how to analyze. Because
θ̃∗(x) is a linear function of the pseudo outcomes ρ∗i (x), it can be written as an average of pseudo-tree

predictions θ̃∗(x) = 1
B

∑B
b=1 θ̃b∗(x) where θ̃b∗(x) =

∑n
i=1 αib(x)(θ(x)+ρ∗i (x)). Then, because each individual

pseudo-tree prediction θ̃b∗ is trained on a size s usbsample of the training data, drawn without replacement,
θ̃∗(x) is an infinite order U -statistic whose order corresponds to the subsample size.

• Arguments of Mentch and Hooker (2016) and Wager and Athey (2018) can be used to study the
averaged estimator θ̃∗(x) using results on U-statistics from Hoeffding (1948) and Efron and Stein
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(1981)2

Difficulty in this proof stratefy is showing that θ̃∗(x) is a good approximation for θ̃(x). Following theorem
establishes this. This is the only point where φ being the negative gradient of a convex loss function is used.

Theorem 1. Under Assumptions 1-6, estumatees θ̂(x), ν̂(x) converge in probability to θ(x), ν(x).

Seperating the analysis of moment estimators into a local approcumation argument that hinges on consistency
and a seperate result that estabilishes consistency is standard; see chapter 5.3 of Van Der Vaart (2000)3

The remainder of analysis assumes that trees are grown on subsamples of size s scalig as s = nβ for some
βmin < β < 1 with

βmin := 1−
(

1 + π−1
(

log(ω−1)
))−1

(13)

where π and ω are as in Specification 1. Scaling garuntees errors of forests are varaicne-dominated.

Lemma 1. Given Assumptions 1-5 and a forest trained according to Specification 1 with condition 13
holding, suppose that the generalized random forest estimator θ̂ is consistent for θ(x). Then θ̂(x) and θ̃∗(x)
are coupled at the following rate

√
n

s

(
θ∗(x)− θ̂(x)

)
= OP

max

s
−
π log((1−ω)−1)

2 log(ω−1) ,

(
s

n

) 1
6


 (14)

where s, ω and π are as in Specification 1.

Given this coupling result, it now remains to study the asymptotics of θ̃∗(x). In doing so, important to
know that θ̃∗(x) is exactly the output of an infeasible regression forest trained on outcomes θ(x) + ρ∗i (x).
So can apply results of Wager and Athey (2018) to this object. With this approach, authors show that,

given 13m θ̃∗(x) and θ̂(x) are both asymptotically normal. Extending the argument can also so this for
nuisance parameters, but noting that since tree is not trained to optimize nuisance, may not work well in
finite samples.

Theorem 2. Suppose Assumptions 1-6 hold and a forest is trained according to Specification 1 with trees
grown on subsamples of size s = nβ satisfying 13. Finally, suppose that Var[ρ∗i (x)|X = x] > 0. Then,

there is a sequence σn(x) for which (θ̂n(x)− θ(x))/σn(x)→ N(0, 1) and σ2
n(x) = polylog(n/s)−1s/n, where

polylog(n/s) is a function that is bounded away from 0 and increases at most polynomially with the log-inverse
sampling ratio log(n/s).

1.4 Confidence Intervals via the Delta Method

Theorem 2 can be used for statistical inference about θ(x). Given a consistent estimator σ̂n(x) for σn(x),
Theorem 2 can be paired with Sltutsky’s lemma to verify

lim
n→∞

P
[
θ(x) ∈

(
θ̂(x)±Ψ−1(1− α/2)σ̂n(x)

)]
= α

So to build asymptotically valid pointwise confidence intervales, it suffices to derive an estimator for σn(x).
Doing so requires leveraging coupling with the approximate pseudo-forest θ̃∗(x). Moreover, from the defini-

2The definition of U-statistic from Hoeffding (1948), via Wikipedia. Let f : Rr → R be a real-valued or complex-valued
function of r variables. For each n ≥ r, the associated U -statistic fn : Rn → R is equal to the average over ordered samples
ϕ(1), . . . , ϕ(r) or size r of the sample values f(xϕ). In otherwords fn(x1, . . . , xn) = avef(xϕ(1),...,xϕ(r)). By neccesity, each
U-statistic is a symmetric function.

3Textbook is Asymptotic Statistics and it can be found in the google drive
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tion of θ̃∗(x), we directly see that

Var
[
θ̃∗(x)

]
= ξTV (x)−1Hn

(
x; θ(x), ν(x)

) (
V (x)−1

)T
ξ (15)

where Hn(x; θ, ν) = Var[
∑n
i=1 αi(x)ψθ,ν(Oi)]. Authors then propose building confidence intervals via

σ̂2
n := ξT V̂n(x)−1Ĥn(x)(V̂n(x)−1)T ξ (16)

Coming up with consistent estimators of V (x) is well studied and not so complex, according to the au-
thors. Estimating H, however, can be difficult since it depends on the true forest score Ψ(θ(x), ν(x)) =∑n
i=1 αi(x)ψθ(x),ν(x)(Oi). To estimate this, they use a variant of the bootstrap of little bags algorithm

(noisy bootstrap) proposed by Sexton and Laake (2009). They obtain the first consitency garuntees for this
method for any type of forest, including regression forests. Notes about this are breifly given below

1.4.1 Consistency of the Bootstrap of Little Bags

10
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2 Deep Learning in NPR Benedikt Bauer and Michael Kohler (AOS, 2019)

Full paper title is “On Deep Learning As A Remedy for the Curse of Dimensionality in Nonparametric
Regression” and can be found via the AoS website here.

2.1 Introduction

In regression analysis, a random vector (X,Y ) with values in Rd×R satisfying EY 2 <∞ is considered, and
an estimation of the relationship between X and Y is attempted. Generally the aim is to minimize the MSE
or L2r risk. So the construction of a measurable function m∗ : Rd → R satisfying

m∗ = arg minf :Rd→R E
{∣∣Y − f(X)

∣∣2}
is of interest. In the following, let m : Rd → R, m(x) = E{Y |X = x} denote the “regression function”. It is
true that for any f :

E
[∣∣Y − f(X)

∣∣2] = E
[∣∣Y −m(X)

∣∣2]+

∫ ∣∣f(x)−m(x)
∣∣2 PX(dx)

it is the optimal predictor m∗. Moreover, a good estimate f : Rd → R (in the L2 risk minimization sense)
has to keep the “L2” error small ∫ ∣∣f(x)−m(x)

∣∣2 PX(dx)

In applications, the distribution of (X,Y ) and m are (typically) unkown, but the statistician does have access
to a set of data

Dn = {(X1, Y1), . . . , (Xn, Yn)}

Goal is typically to create estimates of m, mn to minimize the L2 error. In non-parametric regression
estimation of the regression function does not reduce to estimation of finitely many parameters. Gyordi et
al. (2002) provide a systematic overview of different approaches and nonparametric estimation results.

2.1.1 Rate of Convergence

Well known that one has to restric the class of regression functions one considers to obtain useful results for
the rate of convergence. Following definiton of (p, C)-smoothness is to that end

Definition 1. ((p, C)-smooth) Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function m : Rd → R is

called (p, C)-smooth if, for every α = (α, . . . , αd) ∈ Nd0 with
∑d
j=1 αj = q, the partial derivatives below exist

and satisfy ∣∣∣∣∣ ∂qm

∂xα1
1 · · · ∂x

αd
d

(x)− ∂qm

∂xα1
1 · · · ∂x

αd
d

(z)

∣∣∣∣∣ ≤ C‖x− z‖s
for all x, z ∈ Rd, where ‖·‖ denotes the Euclidean norm.a

aThis is similar to the Holder condition we went over with Zhipeng

Stone (1982) determined the optimal minimax rate of convergence in nonparametric regresion for (p, C)-
smooth functions. A sequence of eventually positive numbers (an)n∈N is called a lower minimax rate of
convergence for the class of distributions D if

lim inf
n→∞

inf
mn

sup
(X,Y )∈D

E
∫
|mn(x)−m(x)|2PX(dx)

an
= C1 > 0

11
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Sequence is said to be an achievable rate of convergence for the class of distributions D if

lim sup
n→∞

sup
(X,Y )∈D

E
∫
|mn(x)−m(x)|2PX(dx)

an
= C2 > 01

Sequence is called an optimal minimax rate of convergence if it both a lower minimiax and achievable rate of
convergence. Stone (1982) shows that the optimal rate of convergence for the estimation of a (p, C)-smooth

regression function is n−
2p

2p+d

2.1.2 Curse of dimensionality

Optimal rate n−
2p

2p+d suffers if d is relatively large compared with p. Phenomenon is well known and called
the curse of dimensionality. Unfortunately, in many applications, the problems are high dimensional and
hence very hard to solve. Only way around this is to impose additional assumptions on the regression
function to derive better rates of convergence. For example, under additive seperability of the regression
function, Stone (1985) shows that the optimal minimax rate of convergence is n−2p/(2p+1).

Paper focuses on applications in connection with complex technical systems, constructed in a modular form.
In this case, modeling the outcome of the system as a function of the results of its modular parts seems
reasonable, where each modular part computes a function depending only on a few of the components of
the high-dimensional input. Modularity can be extremely complex and deep. So, a recursive application of
the described relation makes sense and leads to the following assumption of m, introduced by Kohler and
Kryzak (2017).

Definition 2. Let d ∈ N, d∗ ∈ {1, . . . , d} and m : Rd → R. Then:
1. We say that m satisfies a generalized hierarchical interaction of order d∗ and level 0 if there exist
a1, . . . ad∗ ∈ Rd and f : Rd → R such that

m(x) = f(aT1 x, . . . , a
T
d∗x) for all x ∈ Rd

2. We say that m satisfies a generalized hierarchical model of order d∗ and level l + 1, if there exist
K ∈ N, gk : Rd∗ → R for k = 1, . . . ,K, and f1,k, . . . , fd∗,k : R → R for k = 1, . . . ,K such that all
f1,k, . . . , fd∗,k satisfy a generalized hierarchical interaction model of order d∗ at level l and

m(x) =

K∑
k=1

gk
(
f1,k(x), . . . , fd∗,k(x)

)
for all x ∈ Rd

3. We say that the generalized hierarchical interaction model defined above is (p, C)-smooth if all functions
occuring in its definition are (p, C)-smooth.

To better understand the above definition, we consider the additive model from the beggining of this section
as an example. Notate id : R→ R for the identity function and ei for the ith unit vector. Can then rewrite
the additive model as

d∑
i=1

mi(x
(i)) =

d∑
i=1

mi(id(eTi x)) =

K∑
i=1

gi(f1,i(a
T
i x))

where K = d, gi = mi, f1,i = id and ai = ei. This corresponds to the definition of a gneralized hierarchichal
interaction model of order 1 and level 1.

2.1.3 Neural Networks

Use of neural networks has been most promising approaches in connection with applications related to
approxumation and estimation of multivariate functions. Recently, focus is on multilayer neural networks,

1Achievable in the sense that it is the minimax rate of convergence for at least one estimator mn

12



2 Deep Learning in NPR Benedikt Bauer and Michael Kohler (AOS, 2019)

which use many hidden layers and corresponding techniques.

Multilayer feedforward neural networks with a sigmoidal function σ : R→ [0, 1] can be defined recursively as
follows. A multilayer feedforward neural network with l hidden layers, which has K1, . . . ,Kl ∈ N neurons in
the first, second, through l-th layer, respectively, and uses the activation function σ is a real valued function
defined on Rd of the form

f(x) =

Kl∑
i=1

c
(l)
i · f

(l)
i + c

(l)
0 , 2 (1)

for some c
(l)
0 , . . . , c

(l)
Kl
∈ R and for f

(l)
i recursively defined by

f
(r)
i (x) = σ

Kr−1∑
j=1

c
(r−1)
i,j · f (r−1)j (x) + c

(r−1)
i,0

 , 3 (2)

for some c
(r−1)
i,0 , . . . , c

(r−1)
i,Kr−1

∈ R and r = 1, . . . , l and

f
(1)
i (x) = σ

 d∑
j=1

c
(0)
i,j · x

(j) + c
(0)
i,0

 , 4 (3)

for some c
(0)
i,0 , . . . , c

(0)
i,d ∈ R. Neural network estimates often use an activation function σ : R → [0, 1] that is

nondecreasing and satisfies
lim

z→−∞
σ(z) = 0 and lim

z→∞
σ(z) = 1

for example, the so-called sigmoidal or logistic squasher

σ(z) =
1

1 + exp(−z)
,∀z ∈ R

Most existing theoretical results concerining neural networks consider neural networks using only one hidden
layer, that is functions of the form

f(x) =

K∑
j=1

cj · σ

 d∑
k=1

cj,k · x(k) + cj,0

+ c0 (4)

Consistency of neural network regression estimates is studied by Meilnichzuk and Tyrcha (1993) and Lugosi
and Zeger (1995). The rate of convergence has been analyzed by Barron (1991, 1993, 1993), McCaffery
and Gallant (1994) and Kohler and Krzyzak (2005, 2017). For the L2 error of a single hidden layer neural
network, Barron (1994) proves a dimensionless rate of n−1/2, provided the Fourier transform has a finite

first moment. McCaffery and Gallant (1994) show a rate of n−
2p

2p+d+5+ε for the L2 error of a suitably defined
single hidden layer neural network estimate for (p, C)-smooth functions, but their study was restricted to
the use of a certain cosine squasher as the activation function.

Kohler and Krzyzak (2017) extends convergence results to (p, C)-smooth generalized hierarchical interaction
models of the order d∗. It is shown that for such models suitable defined multilayer neural networks achieve
the rate of convergence n−2p/(2p+d

∗) in case p ≤ 1. Nevertheless this result cannot generate extremely good
rates of convergenve because, even in case of p = 1 and d∗ = 5, it leads to n−2/7.

2We can think about this as a linear regression of the outcome against equations from the final layer
3Apply a sigmoid function to a linear combination of the outputs from the prior round. To clarify some notation: f

(r−1)
j is

the output from the j-th neuron in the (r − 1)-th layer, c
(r−1)
i,j is the weight given at neuron i in the r-th layer to the output

of the j-th neuron in the (r − 1)-th layer. There are Kr neurons at each layer r, so that each neuron in layer r has to “pick”
appropriate weights for all Kr−1 outputs of neurons in layer (r − 1).

4x(j) is the j-th “feature”, “variable”, “column”, what have you.
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Given the succeful application of multilayer feedforward neural networks, the current focus in the theoretical
analysis of approximation properties of neural networks is also on a a possible theoretical advantage of
multilayer feedforward neural networks in contrast to neural networks with only one hidden layer.

2.1.4 Main Results

This article analyzes the rate of convergence of suitable multilayer neural network regression estimates when
the regression function satisfies a (p, C)-smooth generalized hierarchical interaction model of order d∗ and
given level l. Unlike Kohler and Kryzak (2005, 2017) also allow the case p > 1, this leads to far better rates
of convergence. Define sets of multilayer feedforward nueral netwroks that correspond to such a generalized
a generalized hierarchical interaction model and define our regression estimates based on this class of neural
networks. Main finding is that the L2 errors of these least squares neural network regression estimates
achieve the rate of convergence

n−
2p

2p+d∗

up to some logarithmic factor which does not depend on d. Similar rates have been obrained in the literature
but with much more stringent assumptions on the functional class the regression function belongs too. So
this article considerably generalizes the previos results in this regard.

After the original versin of this paper, a relating arXiv article was uploaded by Schmidt-Heiber (2017).
Therein a similar result is proven using a particular unbounded activation function in the neural networks
Available Here

2.1.5 Notation

Let A ⊂ Rd and F be a set of functions f : Rd → R and let ε > 0. A finite collection f1, . . . , fN is called an
ε-‖·‖∞,A-cover of F if for any f ∈ F there exists i ∈ {1, . . . , N} such that

‖f − fi‖∞,A= sup
x∈A
|f(x)− fi(x)|< ε

The ε-‖·‖∞,A-covering number of F is the size N of the smallest ε-‖·‖∞,A-cover of F and is denoted by
N (ε,F , ε-‖·‖∞,A)5.

2.2 Nonparametric Regression Estimation by Multilayer Feedforward Neural Networks

Motivated by the generalized hierarchical interaction models, define spaces of hierarchical neural networks
with parameters K,M∗, D∗, d and level l as follows. Parameter M∗ is introduced for technical reasons and
originates from the composition of several smaller networks in the later proof of approximation results. M∗

controls the accuracy of the approximation and the ideal value will depend on certain properties of the
estimated function. For M∗ ∈ N, d ∈ N, d∗ ∈ [d] and α > 0, denote the set of all functions f : Rd → R that
satisfy

f(x) =

M∗∑
i=1

µi · σ

4d∗∑
j=1

λi,j · σ

 d∑
v=1

θi,j,v · x(v) + θi,j,0

+ λi,0

+ µ0

for x ∈ Rd and some µi, λi,j , θi,j,v ∈ R where

|µi|≤ α, |λi,j |≤ α, |θi,j,v|≤ α
5These are covered in Van derVaart and are important in the Donsker Theorems.
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for all i ∈ {0, 1, . . . ,M∗}, j ∈ {0, . . . , 4d∗}, v ∈ 0, . . . , d by F (neural networks)
M∗,d∗,d,α In the first and second hidden

layer, we use 4 · d∗ ·M∗ and M∗ neurons respectively. However, the neural network has only

W (F (neural networks)
M∗,d∗,d,α ) = M∗ + 1 +M∗ · (4d∗ + 1) +M∗ · 4d∗ · (d+ 1)

= M∗ · (4d∗ · (d+ 2) + 2) + 1 (5)

weights because the first and second hidden layer of the neural network are not fully connected. Instead,
each neuron in te second hidden layer is connected with 4d∗ neurons in the first hidden layer, and this is
done in such a way that each neuron in the first hidden layer is connected with exactly one neural network
in the second hidden layer. This is illustrated below in Figure 1.

Figure 1: A not completely connected neural network f : R5 → R from F (neural networks)
M∗,d∗,d,α with the structure

f(x) =
∑3
i=1 µi · σ(

∑4
j=1 λi,j · σ(

∑5
v=1 θi,j,v · x(v))) (all weights with an index including zero neglected for a

clear illustration). [Lifted from the paper]

For l = 0, we define our space of hierarchical neural networks by

H(0) = F (neural networks)
M∗,d∗,d,α

For l > 0 we define recursively

H(l) =

h : Rd → R : h(x) =

K∑
k=1

gk(f1,k(x), . . . , fd∗,k(x)) for some gk ∈ H(0) and fj,k ∈ H(l−1)

 (6)
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The class H(0) is a set of neural networks with two hidden layers and a number of weights given by (5).
From this, one can recursively conclude that for l > 0, the class H(l) is a set of neural networks with 2 · l+ 2
hidden layers. This is illustrated below in Figure 2 Furthermore, let N(H(l)) denote the number of linked

Figure 2: Illustration of the components of a function from H(l) [Lifted from the paper]

two-layered networks from F (neural networks)
M∗,d∗,d,α that define the functions from H(l). Then the following recursion

holds:

N(H(0)) = 1,

N(H(l)) = K +K · d∗ ·N(H(l−1)), l ∈ N

which can be retraced following Figure 2. Above functions g1, . . . , gK correspond to K networks from

H(0) = F (neural networks)
M∗,d∗,d,α and the K · d∗ inner functions f1,1, . . . , fd∗,K originate from H(l−1), which leads to

K · d∗ ·N(H(l−1)) additional networks.

Recursuve consideration yields

N(H(l)) =

l∑
t=1

d∗t−1 ·Kt + (d∗ ·K)l (7)

Consequently, a function from H(l) has at most

N(H(l)) ·W (F (neural networks)
M∗,d∗,d,α ) (8)

variable weights. Although this number of weights is exponential in the number of layers l, it can be controlled
because a typical example of the technical systems which motivated Definition 2 has only a moderate finite
l. As explained in the definition, all typical assumptions for the regression function in the literature also
correspond to a small l.

Define m̃n as the least squares estimate

m̃n(·) = arg min
h∈H(l)

1

n

n∑
i=1

∣∣Yi − h(Xi)
∣∣2 (9)

For the result this needs to be truncated. Define the truncation operator Tβ with level β > 0 as

Tβu =

{
u if |u|≤ β
β · sign(u) otherwise

Results requre a few additional properties on activation function, which are satisfied by many common acti-
vation functions (like the sigmoidal squasher) and they can be checked with arbitrary N ∈ N0. Summarized
in the next definition
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Definition 3. A nondecresaing and Lipschitz continuous function σ : R → [0, 1] is called N -admissable if
the following conditions hold

1. The function σ is at least N + 1 times differentiable with bounded derivatives.
2. A point tσ ∈ R exists where all derivatives up to the order N of σ are different from zero.
3. If y > 0, the relation |σ(y)− 1|≤ 1

y holds. If y < 0, the relation |σ(y)|≤ 1
|y| holds.

Theorem 1 (Main Result). Let {(Xi, Yi)}ni=1 be independent and identically distributed random variables
in Rd × R such that supp(X) is bounded and

E exp(c1 · Y 2) <∞, a (10)

for some constant c1 > 0. Let m be the corresponding regression function, which satisfies a (p, C)-smooth
generalized hierarchical interaction model of order d∗ and finite level l with p = q + s for some q ∈ N0 and
s ∈ (0, 1]. Let N ∈ N0 with N ≥ q. Furthermore, assume that in Definition 2.b all partial derivatives of
order less than or equal to q of the functions gk, fj,k are bounded. That is, assume that easch function f
satisfies

max
j1,...,jd∈{0,1,...,q},

j1+···+jd≤q

∥∥∥∥∥ ∂j1+···+jdf

∂j1x(1) . . . ∂jdx(d)

∥∥∥∥∥ ≤ c2 (11)

and let all functions gk be Lipschitz continuous with Lipschitz constant L > 0 [which follows from (11 if

q > 0]. Let H(l) be defined as in (6) with K, d, d∗ as in the definition of m, M∗ =
⌈
c56 · nd

∗
2p+ d∗

⌉
.

α = nc57 for suffeciently large constants c56, c57 > 0, and using an N -admissible σ : R → [0, 1] according to
Definition 3.Let m̃n be the least squares estimate defined by (9) and define mn = Tc3 lognm̃n. Then

E

∫ ∣∣mn(x)−m(x)
∣∣2 PX(dx) ≤ c4 · log3(n) · n−

2p
2p+d∗

holds for suffeciently large n.

aThis is basically saying that the moment generating function of Y 2 exists in some neighborhood around 0

The authors include the following remarks on this main result

1. For p ≥ 1 and C ≥ 1, the class of (p, C)-smooth generalized hierarchical interaction models of order
d∗ satisfying the assumptions of the theorem contains all (p, C)-smooth functions, which depend on at
most d∗ of its input components (because all functions in Def 2 can be chosen as projections). So, the
rate of convergence in Theorem 1 is optimal up to some logarithmic factor, according to Stone (1982).

2. Some parameters of the estimate mn, like l,K, or d∗ can be uknown in practice. They then would
have to be chosen in a data dependent way. This has been studied in the literature apparently.

3. Equation (10) in above theorem prevents heavy tails and ensure that the distribution of Y is suffeciently
concentrated in order to allow good estimates.

Corollary 1. Suppose {(Xi, Yi)}ni=1 is an i.i.d sample with values in Rd × R such that the support of X is
bounded and E exp(c1 · Y 2) < ∞ for some constant c1 > 0. Suppose the corresponding regression function
m satisfies a (2, C)-smooth generalized hierarchical interaction model of order 2 and finite level 0. Further

assume that in Definition 2.b all partial derivatives of order ≤ 1 of gk, fj,k are bounded. Take M∗ =
⌈
c56n

1
3

⌉
.

Use σ(z) = 1
1+exp(−z) and m̃n and mn as defined in Theorem 1. Then

E

∫ ∣∣mn(x)−m(x)
∣∣2 PX(dx) ≤ c4 · log3(n) · n− 2

3 , 1

holds for sufficiently large n.

1Stringent conditions, but that is a wicked rate of convergence
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Proof. Using notation from Theorem 1, can choose N = 1 = 1. The sigmoidal squasher σ is 1-admissible.
Then the application of Theorem 1 implies the corollary.

2.3 Application to Simulated Data

Section compares the neural net to an adaptive k-nearest neighbors appraoch as interpolation with radial
basis function (RBF ). The paramaters l,K, d∗,M∗ of the neural network estimate (neural-x ) defined in
Theorem 1. To solve the least squares problem in (9). To solve the least squares problem use the quasi-
Newton method of the function fminunc in MATLAB to approximate a solution.

Also compare this neural network estimate, which is characterized by the data-dependent choice of its
structure and not completely connected neurons, to more ordinary fully connected neural networks with
predefined numbers of layers but adaptively chosen numbers of neurons per layer.

Estimate outpreforms the other approaches in the three typical examples for generalized hierarchical inter-
action models. In these cases, the relative improvement of the estimate is larger with a larger sample size,
which is an indicator of a better rate of convergence.

In some more extreme cases, this paper’s approach is not always the best, though it still preforms will in
some situations. In any case though, the results from simulation are promising.

2.4 Proofs

Won’t be covered in notes, but the proofs are given in section four of the paper and would be a good idea
to examine.
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3 NPR Using Deep Neural Networks Johannes Schmidt-Hieber (ArXiv, 2017)

Full paper title is “Nonparametric regression using deep beural networks with ReLU activation function.”
Paper appeared on ArXiv in 2019 and (I believe) is due to appear in Annals at some point. It can be found
here.

3.1 Introduction

In nonparametric regression model with random covariates in unit hypercube, observe n i.i.d vectors Xi ∈
[0, 1]d and n responses Yi ∈ R from the model X

Yi = f0(Xi) + εi (1)

The noise variables εi are assumed to be i.i.d standard normal and independent of Xi. Statistical problem is
to recover the unkown function f0 : [0, 1]d → R from the sample (X, Yi)i. Various methods exist that allow
one to estimate the regression function nonparametrically, including kernel regression, smoothing, series esti-
mators/wavelets, and splines. This paper considers fitting a multilayer feedforward artificial neural network
to the data. Shown that estimator achieves nearly optimal convergence rates under various constraints on
the regression function.

Deep neural networks have been used in practice from some time, but there is not much mathematrical
understanding. Problem is that fitting a neural network to data is highly nonlinear in the parameters.
Moreover, the function class is non-convex and various regularization methods are combined in practice.

Article inspired by the idea to build a statistical theory that provides some understanding of these procedures.
Method is too complex to be theoretically tractible, so some selection of important characteristics must be
done in analysis.

To fit a neural network, an activation function σ : R → R needs to be chosen. Traditionally, sigmoidal
activation functions were employed (as in Secition 2). For deep neural networks, however, there is a clear
gain to using the non-sigmoidal rectifier linear unit (ReLU)

σ(x) = max(x, 0) = (x)+

In practice, ReLU outperforms other activation functions with regards to performance and computational
cost. Statistical analysis for ReLU activation function is quite different from earlier approaches. Viewed as a
nonparametric method, ReLU networks have some suprising properties. Deep networks with ReLU activation
produce functions that are piecewise linear in the input. Nonparametric methods based on piecewise linear
approacimations are typically not able to capture higher order smoothness in the signal and are rate-optimal
only up to smoothness index two. Paper shows that ReLU combined with deep network architecture achieves
near minimax rates for arbitrary smoothness of the regression function.

Number of hidden layers has been growing, results support this. Further, generally contain many more
network parameters than sample size. Paper accounts for this by assuming number of potential nework
parameters is much larger than the sample size. For noisy data generated from the nonparameteric regression
model, overfitting leads to generalization errors and incorporating regularization becomes esential.

Existing statistical theoery often requires that the size of the network parameteres tends to infinity as the
sample size increases. In practice, estimated network weights are, however, rather samll. Paper incorporates
this into theory, procing it is suffecient to consider neural networks with all network parameters bounded in
absolute value by one.

Still, NPR using deep neural nets has to get around the curse of dimensionality. Paper gets around this by
imposing the generalized hierarchical model structure.
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3.2 Mathematical Definition of Multilayer Neural Networks

Neural Network Fitting a nerual network requires the choice of an activatino function σ : R → R and
the network architecture. Paper studies the ReLU activation funtion

σ(x) = max(x, 0)

For v = (v1, . . . , vr) define the shifted activation function σv : Rr → Rr as

σv


y1
...
yr

 =


σ(y1 − v1)

...
σ(yr − vr)


The network architecture (L,p) consists of a positive integer L called the number of hidden layers or depth
and a width vector p ∈ NL+2. So a neural network with network architecture (L,p) is then any function of
the form

f : Rp0 → RPL+1 , x 7→ f(x) = WlσvLWL−1σvl−1
· · ·W1σv1W0x (2)

where Wi is a pi × pi+1 weight matrix and vi ∈ Rpi is a shift vector. Network functions are therefore built
by alternating matrix-vector multiplications with the action of the non-linear activation functions σ. In (2)
it is also possible to omit the shift vectors by considering the input (x, 1) and enlarging the weight matrices
by one row and one column with appropriate entries.

In the compsci literature, neural networks are more commonly introduced via their representation as directed
acyclic graphs, like in a figure above in section 2.

Mathematical Modeling of Deep Network Characteristics Given a network function f(x) as defined
in (2), the network parameters are the entries of the matricies (Wj)j=0,...,L and the vectors (vj)j=0,...,L. These
parameters need to be estimated/learned from the data.

Aim of this article is to consider a framework that incorporates essential features of modern deep network
architectures. Allow for large depth L and large number of potential network parameter. Thus, consider
high dimensional settings with more parameters that training data.

Another characteristic of trained networks is that the size of the learned network parameters is typically not
very large. Common network initialize the weight matrices Wj by a nearly orthogonal random matrix if two
succesive layers have the same width. IN practice, the trained network weights are typically not far from the
initialized weights. In an orthogonal matrix, all entries are bounded in absolute value by one, this explains
that also the trained network weights are not large.

Existing theory requires that the size of the network parameters tends to infinity. If large parameters are
allowed, one can easily approximate step functions by ReLU networks. To be more in line with what is
observed in practice, consider networks with all parameters bounded by one. Constraint can easily be build
into the deep learning algorithm by projecting the network parameters in each iteration onto the interval
[-1,1].

If ‖Wi‖∞ denotes the sup-norm of Wj , the space of network functions with given network architecture and
network parameters bounded by one is

F(L,p) :=

{
f of the form (2) : max

j=0,...,L
‖Wj‖∞∨|vk|∞≤ 1

}
(3)

with the coefficeint that v0 is a vector of coefficients all equal to zero.

In deep learning, sparsity of the neural network is enforced through regularization or specific forms of
networks. Dropout, for instance, randomly sets units to 0 and has the effect that each unit will be active
only for a small fraction of the data. In the notation of this paper, this means that each of the vectors
σvkWk=1 · · ·W1σv1W0x, k = 1, . . . , L is zero over a large range of the input space x ∈ [0, 1]d. Convolutional
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neural networks filter the input over local neighborhoods. Rewritten in the form (2), this essentially means
that the Wi are banded Toeplitz matrices1. All network parameters corresponding to higher off-diagonal
entries are thus set to zero.

This paper models sparsity by asusming that there are only a few non-zero / active network parameters. If
‖Wj‖0 denotes the number of non-zero entries, then the s-sparse networks are given by

F(L,p, s) := F(L,p, s, F )

:=

f ∈ F(L,p) :

L∑
j=0

‖Wj‖0+|vj |0≤ s, ‖f‖∞≤ F

 (4)

The upper bound on the uniform/sup norm of f is most of the time not needed and omitted in the nota-
tion. Consider cases where the number of network parameters s is small compared to the total number of
parameters in the network.

To estimate the parameters of the model, it is common to apply variations of stochastic gradient descent
combined with other techniques such as dropout to the loss induced by the log-likelihood. For nonparametric
regression with normal errors, this coincides with the least-squares loss. The common objective of all
reconstruction methods is to find networds f with a small empirical risk 1

n

∑n
i=1(Yi − f(Xi))

2. For any

estimator f̂n that returns a network in the class F(L,p, s, F ) define the correspoinding quantity

∆n(f̂n, f0) := Ef0

 1

n

n∑
i=1

(Yi − f̂n(X)i)
2 − inf

f∈F(L,p,s,F )

1

n

n∑
i=1

(Yi − f(X)i)
2

 (5)

The sequence ∆n(f̂n, f0) measures the difference between the expected empirical risk of f̂n and the global
minimum over all networks in the class. The subscript f0 indicates that the expectation is taken with respect
to the sample generated from the nonparametric regression model with regression function f0. In general
∆n(f̂n, g0) ≥ 0 and ∆n(f̂n, f0) = 0 if f̂n is an empirical risk minimizer. Note here this is just measuring the
“distance” between the estimation technique and the global minimumum.

To evaluate the statistical performance of an estimator f̂n, derive bounds for the prediction error

R(f̂n, f0) := Ef0
[(
f̂n(X)− f0(X)

)2]
The term ∆n(f̂n, f0) can be related via empirical process theory to a constant times (R(f̂n, f0)−R(f̂ERM

n , f0))

plus a remainder, where f̂ERM
n being an empirical risk minimizer. So ∆n(f̂n, f0) in n for commonly employed

methods such as stochastic gradient descent is an interesting problem in its own. Only skech a possible proof
strategy here:

1. Because of potentially local minima and saddle poins, gradient descent bethods only have a small
chance to reach the global minimum w/o getting stuck in a local minimum first

2. Making a link to sperical spin glasses, paper cited provides a heuristic suggesting that the loss of any
local minima lies in a band that is lower bounded by the loss of the global minimum

3. Width of the band depends on the width of the network, if the heuristic argument can be made rigorous
then the width of the band provides an upper bound for ∆n(f̂n, f0) for all methods that converge to
a local minumum

1A Toeplitz matrix is one where each descending diagonal from left to right is constant. For examplea b c
d a b
e d a


is a Toeplitz matrix. An l banded Toeplitz matrix is one such that only the middle l diagonals of the matrix are non-zero. For
example, a traditional diagonal matrix is a 1 banded Toeplitz matrix
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This would allow study of deep learning without an explicit analysis of the algorithm.

3.3 Main Results

Theoretical performance of neural networks dpends on the underlying function class. Classical appraoch in
nonparametric statistics is to assume that the regression function is β-smooth. The minimax estimation rate
for the prediction error is then

n−2β/(2β+d)

Since the input dimension d in neural network applications is very large, these rates are extremely slow. The
huge sample sizes often encountered in these applications are by far not sufficient to compensate the slow
rates. With this in mind, consider a function class that is natural for neural nrwtorks and exhibits some
low-dimensional structure that leads to input dimension free exponents in the esimation rates.

Assume that the regression function f0 is a composition of several functions, that is,

f0 = gq ◦ gq−1 ◦ . . . ◦ g1 ◦ g0 (6)

with gi : [ai, bi]
di → [ai+1, bi+1]di+1 . Denote by gi = (gij)

T
j=1,...,di+1

the components of gi and let ti be the
maximal number of variables on which each of the gij depends on. Thus, without loss of generality, each gij
is a ti variate function. As an example, consider the function f0(x1, x2, x3) = g11(g01(x3), g02(x2)) for which
d0 = 3, t0 = 1, d1 = t1 = 2, and d2 = 1.

Always must have ti ≤ di, and for certain constraints, such as in additive models, ti mught be much smaller
than di. The single components g0, . . . , f1 and the pairs (βi, ti) are clearly not identifiable. As we are only
interested in estimation of f0, this causes no problems. Among all possible representations, one should pick
the one that leads to the fastest estimation rate.

In the d-variate regression model (1), f0 : [0, 1]d → R and thus d0 = d, a0 = 0, b0 = 1, and dq+1 = 1. One
should keep in mind that (6) is an assumption on the regression function that can be made independently of
whether neural networks are used to fit the data or not. In particular, the number of layers L in the network
need not be the same as q.

Conceivable that for many of the problems for which neural networks perform well, a hidden hierarchical
input-output relationship of the form (6) is present with small values ti. Slightly more specific function
spaces, which alternate between summations and compositions of functions have been considered (the paper
in Section 2) is an example of one of these).

A function has Hölder smoothness index β if all partial derivatives up to order bβc exist and are bounded,
and the partial derivatives of order bβc are β − bβc Hölder. The ball of β-Hölder functions with raduis K is
then defined as

Cβr (D,K) =

f : D ⊂ Rr → R :
∑

α:|α|<β|

‖∂αf‖∞+
∑

α:|α|=bβc

sup
x,y∈D
x6=y


Assume that each of the functions gij has Hölder smoothness βi. Since gij is also ti-variate, gij ∈ Cβiti

(
[ai, bi]

ti ,Ki

)
and the underlying function space becomes

G(q,d, t,β,K) :=

{
f = gq ◦ . . . ◦ g0 : gi = (gij)j : [ai, bi]

di → [ai+1, bi+1]di+1 ,

gij ∈ Cβiti
(
[ai, bi]

ti , LK
)
, for some |ai|, |bi|≤ K

}
with d := (d0, . . . , dq+1), t := (t0, . . . , tq), β := (β0, . . . , βq).

For estimation rates in the nonparametric regression model, the crucial quantity is the smoothness of f .
Imposing smoothness on the functions gi, one must be find the induced smoothness of f , for comparasion on
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the minimax rates, etc. If, for instance, q = 1, β0, β1 ≤ 1, and d0 = d1 = t0 = t1 = 1 and f has smoothness
β0, β1, then one should be able to achieve at lest the convergence rate n−2β0β1/(2β0β1+1)

For β1 > 1, this rate changes. Below will show that the convergence of the network estimator is described
by the effective smoothness indices

β∗i := βi

q∏
`=i+1

(β` ∧ 1)

via the rate

φi := max
i=0,...,q

n
− 2β∗i

2β∗
i
+ti (7)

Recalling the definition of ∆n(f̂n, f0) in (5).

Theorem 1 (Main Result). Consider the d-variate nonparametric model in (1) for composite regres-

sion function (6) in the class G(q,d, t,β,K). Let f̂n be an estimator taking values in the network class
F(L, (pi)i=0,...,L+1, s, F ) satisfying

1. F ≥ max(K, 1)
2.
∑q
i=0 log2(4ti ∨ 4βi) log2 n ≤ L . nφna

3. nφn . mini=1,...,L pi
4. s � nφn log n

Then there exist constants C,C ′ only depending on q,d, t,β, F such that if ∆n(f̂m, f0) ≤ CφnL log2(n) then

R(f̂n, f0) ≤ C ′φnL log2 n (8)

and if ∆n(f̂n, f0) ≥ CφnL log2 n then

1

C ′
∆n(f̂n, f0) ≤ R(f̂n, f0) ≤ C ′∆n(f̂n, f0) (9)

aFrom what I understand, the notation . fn means o(fn) whereas the notation � fn means O(fn)

In order to minimize the rate φnL log2 n the best choice is to choose L of the order log2 n. The rate in the

regime ∆n(f̂n, f0) ≤ C ′φn log3 n becomes then

R(f̂n, f0) ≤ C ′φn log3 n

Convergence rate in Theorem 1 depends on φn. Below will show that φn is a lower bound for the minimax
estimation risk over this class. The term ∆n(f̂m, f0) is large if f̂n has a large empirical risk compared to the
empirical risk minimizer. Having this term in the convergence rate is unavoidable as it also wppears in the
lower bound derived in (9). Since for the empirical risk minimizer the δn-term is zero by definition, we have
the following direct consequence of the main theorem.

Corollary 1. Let f̃n ∈ arg minf∈F(L,p,s,F )

∑n
i=1(Yi − f(Xi))

2 be the empirical risk minimizer. Under the
same conditions as for Theorem 1, there exists a constant C ′ only depending on q,d, t,β such that

R(f̃n, f0) ≤ C ′φnL log2 n (10)

Condition (i) in Theorem 1 is mild and only states that the newtwork functions should have at least the
same supremum norm as the regression function. From the other assumptions in Theoream 1 it becomes
clear that there is a lot of flexibility in picking a good network architecture as long as the number of active
parameters is of the “right” order. To choose a network depth L is is suffecient to have an upper bound on
the ti ≤ di and the smoothness indices βi. Network width can be chosen independent of the smoothness
indices by taking, for instance n . mini pi.

Maybe possible to choose the sparsity s adaptibely. From a practical point of view it is concievable but left
to future work.
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Number of network parameters in a fully connected network is of the order
∑L
i=0 pipi+1. This shows that

Theorem 1 requires sparse networks (since it requires a condition on L). For clearness of exposition, Theorem
1 is stated without explicit constants, the proofs, however, an non-asymptotic. It is well-known that depe
learning outperforms other methods only for long sample size. This indicated that the method may be able
to adapt to underlying structure in the signal and thereform achieving fast convergence rates but with large
constants or remainder terms which spoil the results for small samples.

Proof of the risk bounds in Theorem 1 is based on the following oracle-type inequality

Theorem 2. Consider the d-variate nonparametric regression model specified in (1) with unkown regression

function f0 satisfying ‖f0‖∞≤ F for some F ≥ 1. Let f̂n be any estimator taking values in the class

F(L,p, s, F ) and let ∆n(f̂n, f0) be the quantity defined in (5). For any ε ∈ (0, 1] there exists a constant Cε
depending only on ε such that with

τε,n := CεF
2 (s+ 1) log

(
n(s+ 1)Lp0pL+1

)
n

we have
(1− ε)2∆n(f̂n, f0)− τε,n ≤ R(f̂n, f0)

≤ (1 + ε)2

(
inf

f∈F(L,p,s,F )
‖f − f0‖2∞ + ∆n(f̂n, f0)

)
+ τε,n

A consequence of the oracle inequality is that the upper bounds on the risk become worse as the number of
later increases. This is consistent with what has been observed in practice.

An inspection of the proof shows two specific properties of the ReLU function is used. One of the advantages
of deep ReLU networks is the projection property

σ ◦ σ = σ (11)

that can be used to pass a signal without change through several layers in the network. This is important
since the approximation theory is based on the construction of smaller networks for simpler tasks that may
not all have the same network depth. To combine these subnetworks into one needs to synchronzie network
depths by adding hidden layers that do not change the output.

Another advantage of the ReLU activation is that all network parameters can be taken to be bounded in
absolute value by one. If all network parameters are initialized by a value in [-1,1], this means that each
network parameters only need to be varied by at most two during training. It is unclear whether results in
the literature for non ReLU acrivation functions hold for bounded network parameters.

The L log2 n factor in the convergence rate φnL log2 n is likely an artifact of the proof. Nexgt show that φn
is a lower bound for the minimax estimation risk over the class G(q,d, t,β,K) in the interesting case that
ti ≤ min(d0, . . . , di−1) for all i. This means that no dimensions are added on deeper abstraction levls in the
composition of functions.

Theorem 3. Consider the nonparameteric regression model (1) with Xi drawn from a distribution with
Lebesgue density on [0, 1]d which is lower and upper bounded by positive constants. For any non-negative
integer q, any dimension vectors d and t satisfying ti ≤ min(d0, . . . , di=1), any smoothness vector β and all
sufficiently large constants K > 0, there exists a positive constant c such that

inf
f̂n

sup
f0∈G(q,d,t,β,K)

R(f̂n, f0) ≥ cφn

where the inf is taken over all estimators f̂n
a

aThis shows that φn is a lower bound on minimax rate of convergence for estimators
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Proof is in appendix. Main ideas are sketched

1. For simplicity, assume that ti = di = 1 for all i. In this case, the functions gi are all univariate and
real-valued. Define i∗ ∈ arg mini=0,...,q β

∗
i /(2β

∗
i + 1) as an index for which estimation rate is obtained.

2. For any α > 0, xα has Hölder smoothness α and for α = 1 the function is infintely differentiable and
has finite Hölder norm for all smoothness indices.1.Set g`(x) = x for ` < i∗ and g`(x) = xβ`∧1 for
` > i∗. Then

f0(x) = g1 ◦ gq−1 ◦ . . . ◦ g1 ◦ g0(x) =
(
gi∗(x)

)∏q
`=i∗+1

β`∧1

3. Assuming a uniform random design (errors distributed the same), the Kullback-Leibler divergence is
KL(Pf , Pg) = n

2 ‖g−f‖
2
2.

2 Take a kernel function K and consider g̃(x) = hβi∗K(x/h). Under standard
assumptions on K, g̃ has Hölder smoothness index βi∗ .

4. Now can generate two hypotheses f00(x) = 0 and f01(x) = (hβi∗K(x/h))
∏q
`=i∗+1

β`∧1 by taking gi∗(x) =
0 and gi∗(x) = g̃(x). Therefore, because our domain bounds x ∈ [0, 1]: |f00(0)−f01(0)| & hβi∗ assuming
that K(0) > 0.

5. For the Kullback-Leibler divergence, find KL(Pf00 , Pf01) . nh2β
∗
i∗+1. Using a theorem 2.2 from the

book Introduction to nonparametric estimation (Tsybakov 2009), this shows that the poitwise rate of
convergence is

n−2β
∗
i∗/(2β

∗
i∗+1) = max

1=0,...,q
n−2β

∗
i /(2β

∗
i +1)

which matches with the upper bound since ti = 1 for all i. For lower bound on the prediction error,
generalize argument to a multiple testing problem.

L2-minimax rate coincides in most regimes with the sup-norm rate obtained for composition of two functions.
But unlike the classical nonparameteric regression model, the minimax estimation rates for L2-loss and sup-
norm loss differ fot some setups by a polynomial power. There are several results in approximation theory
that provide lower bounds on the number of required network weights s such that all functions in a function
class can be approximated by a s-sparse network up to some prescribed error. Results of this flavor can also
be quite easily derived by combining the minimax lower bound with the oracle inequality. Argument is that
if the same approximaation rates would hold for networks with fewer parameters, we would obtain rates that
are faster than the minimax rates.

Lemma 1. Given β,K > 0, d ∈ N, there exists constants c1, c2 only depending on β,K, d such that if

s ≤ c1
ε−d/β

L log(1/ε)

for some ε ≤ c2, then for any width vector p with p0 = d and pL+1 = 1

sup
f0∈Cβd ([0,1]d,K)

inf
f∈F(L,p,s)

≥ ε

This, I guess, helps establish some lower bound.

1Holder norm with smoothness index β over a class of functions defined over Ω and into R,

‖f‖1,β= sup
x∈Ω
|f(x)|+ sup

x∈Ω
|f ′(x)|+ sup

x,y∈Ω
x 6=y

|f ′(x)− f ′(y)|
‖x− y‖β

2Kullback-Leibler divergence is a measure of how “far apart” probability distributions are. If P and Q are probability
distributions over a set X , and P is absolutely continuous with respect to Q, then the Kullback-Leibler divergence from Q to
P is defined as

KL(Pf , Pg) =

∫
X

log

(
dP

dQ

)
dP

where dP
dQ

is the density (Radon-Nikodym derivative) of P with respect to Q.
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Article appeared in Annals of Probability in 2017. It can be found through the AoP website here or from
ArXiv here.

Paper derives central limit theorems and bootstrap theorems for probabilities that sums of centered high
dimensional random vectors hit hyperrectangles and sparsely convex sets.

4.1 Introduction

Let X1, . . . , Xn be independent random vectors in Rp where p ≥ 3 may be large or even much larger than
n. Denote by Xij the j-th coordinate of Xi so that Xi = (Xi1, . . . , Xip)

′. Assume that each Xi is centered,
so that E[Xij] = 0 and E[X2

ij ] <∞ for all i = 1, . . . , n and j = 1, . . . , p. Define the normalized sum

SXn :=
(
SXn1, . . . , S

X
np

)′
:=

1√
n

n∑
i=1

Xi

Paper considers Gaussian approximations to SXn and, to this end, let Y1, . . . , Yn be independent centered
Gaussian random vectors in Rp such that each Yi has the same covariance matrix as Xi, that is Yi ∼
N(0,E[XiX

′
i]). Define the normalized sum for the Gaussian random vectors

SYn :=
(
SYn1, . . . , S

Y
np

)′
:=

1√
n

n∑
i=1

Yi

Interested in bounding the quantity

ρn(A) := sup
A∈A

∣∣∣P(SXn ∈ A)− P(SYn ∈ A)
∣∣∣ (1)

whereA is a class of Borel sets in Rp. Section 2 derives this bound forA = Are, the class of all hyperrectangles
ans shows that this bound converges to 0 under some conditions.

Bounding ρn(A) for various classes A of sets in Rp with a special emphasis on explicit dependence on the
dimension p in the bounds has been studied. The appendix for the 2013 Annals of Statistics Paper, “Gaussian
approximations and multiplier bootstrap for maxima of sums of high dimensional random vectors” also by
Chernozhukov, Chetverkiov, Kato offers a literature review. Typically interested in how fast p = pn →∞ is
allowed to grow while guaranteeing ρn(A)→ 0. In particular, Bentkus (2003) establishes one of the sharpest
results in this direction, which states tht when X1, . . . , Xn are i.i.d with E[XiX

′
i] = Ip

ρn(A) ≤ Cp(A)
E[‖X1‖3]√

n
(2)

where Cp(A) is a constant that depends only on p and A. For example if A is the class of all Euclidean balls
in Rp then Cp(A) is bounded by a universal constant. This bound does not allow p to be larger to n, however,
if we need that ρn(A) → 0. By Jensen’s inequality, when E[X1X

′
1] = Ip, E[‖X1‖3] ≥ (E[‖X1‖2])3/2 = p3/2,

and hence in order to make the right-hand side of (2) be o(1) we need p = o(n1/3).

In modern statistical applications, however, p is often much larger than n. So it may be interesting to ask
whether it is possible to provide a nontrivial class of sets A in Rp for which one could have that

ρn(A)→ 0 even if p is potentially larger than or much larger than n (3)

This paper derives bounds on ρn(A) for A = Are, the class of all hyperrectangles, or more generally for
A ⊂ Asi, a class of all simple convex sets and shows that these bounds lead to results of type (3).

Any convex set is a simple convex set if it can be approximated by a convex polytope whose number of facets
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is (potentially very large but) not too large. This is discussed in Section 3. This is interesting because it
allows for the derivation of similar bounds for A = Asp(s), the set of (s-)sparsely convex sets. These are sets
that can be represented as a intersection of many convex sets whose indicator functions depend non-trivially
on at most s elements of their arguments (for some small s).

These sets are useful for applications to statistics. In particular, the results for hyperrectangles and sparsely
convex sets are of importance because they allow for approximating the distributions of various key statistics
that arise in high-dimensional models. For example, the probability that a collections of Kolmogorov-
Smirinov type statistics falls below a collection of thresholds

P
(

max
j∈Jk

SKnj ≤ tk for all k = 1, . . . , κ

)
= P

(
SXn ∈ A

)
can be approximated by P (SYn ∈ A) within the error margin ρn(Are); here Jk are non-intersecting subsets of
{1, . . . , p}, {tk} are thresholds in the interval (−∞,∞), κ ≥ 1 is an integer, and A ∈ Are is a hyperrectangle
of the form

{w ∈ RP : max
j∈Jk

wj ≤ tk for all k = 1, . . . , κ}

Some Notation Use notation ‖v‖0=
∑p
j=1 1{vj 6= 0} and ‖v‖= (

∑p
j=1 v

2
j )1/2. For α > 0, defined the

function ψa : [0,∞)→ [0,∞) by φα := exp(xα)− 1. Consider

‖ξ‖ψα := inf{λ > 0 : E[ψα(|ξ|/λ)] ≤ 1}

For α ∈ [1,∞) this is a well defined norm, whereas for α ∈ (0, 1) this is a quasi-norm. That is, there exists
a constant Kα depending only on α such that

‖ξ1 + ξ2‖ψα≤ Kα(‖ξ1‖ψα+‖ξ2‖ψα)

Throughout the paper assume n ≥ 4 and p ≥ 3

4.2 High-dimensional CLT for hyperrectangles

Begin by presenting an abstract theorem. General but depends on the tail properties of the distributions of
the coordinates of Xi in a nontrivial way. Next, apply this theorem under simple moment conditions and
derive more explicit bounds.

Let Are be the class of all hyperrectangles in Rp; that is Are consists of all sets A of the form

A = {w ∈ RP : aj ≤ wj ≤ bj for all j = 1, . . . , p} (4)

for some −∞ ≤ aj ≤ bj ≤ ∞, j = 1, . . . , p. Will derive a bound on ρn(Are) and show that, under certain
conditions it converges to 0, even in the high dimensional setting.

To describe the bound, need to prepare some notation. Define

Ln := max
1≤j≤p

n∑
i=1

E
[
|Xij |3

]
/n

and for φ ≥ 1, define for Z = X,Y

Mn,Z(φ) := n−1
n∑
i=1

E

[
max
1≤j≤p

1

{
max
1≤j≤p

|Xij |<
√
n/(4φ log p)

}]
(5)

and let
Mn(φ) := Mn,X(φ) +Mn,Y (φ)

The following is the main result of the paper
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Theorem 1 (Abstract high-dimensional CLT for hyper-rectangles). Suppose that there exists some constant
b > 0 such that n−1

∑n
i=1 E[X2

ij ] ≥ b for all j = 1, . . . , p. Then tere exist constants K1,K2 > 0 depending

only on b such that, for every constant L̄n ≥ Ln,

ρn(Are) ≤ K1

( L̄2
n log7 p

n

) 1
6

+
Mn(φn)

L̄n

 (6)

with

φn := K2

(
L̄2
n log4 p

n

)− 1
6

(7)

Remark 1 (Key Features of Theorem 1). The bound in (6) can be contrasted with the Bentkus bound.
Assume that the vectors X1, . . . , Xn all have second moment of 1 and are bounded by Bn ≥ 1. Then (6)
reduces to

ρn(Are) ≤ K(n−1B@
n log7(pn))1/6 (8)

Importantly, the RHS above converges to 0 even when p is much larger than n. Indeed, one needs
B2
n log7(pn) = o(n). In contrast, the Bentkus bound requires

√
p = o(n1/7).

4.3 High-dimensional CLT for simple and sparsely convex sets

Section extends the result of Section 2 by considering larger classes of sets. In particular, consider classes
of simple convex sets and obtain, under certain conditions, bounds that are similar to those in the previous
section. In particular this allows us to derive bounds for classes of sparsely convex sets, which may be of
interest in statistics where sparse models and techniques have been of canonical importance in past years.

4.3.1 Simple Convex Sets

Consider a closed convex set A ⊂ Rp. This set can be characterized by its support function

SA : Sp−1 → R ∪ {∞}, v 7→ SA(v) := sup{w′v : w ∈ A}

where Sp−1 := {v ∈ Rp : ‖v‖= 1}. In particular, note that

A =
⋂

v∈Sp−1

{w ∈ Rp : w′v ≤ SA(v)}

Say that A is m-generated if it is generated by the intersection of m half-spaces.1 That is, A is a convex
polytope with at most m facets. The support function SA of such a set A can be characterized completely
by it’s values {SA(v) : v ∈ V(A)} for the set V(A) of unit vectors that are outward normal to the facets of
A. Indeed

A =
⋂

v∈V(A)

{w ∈ Rp : w′b ≤ SAm(v)}

For ε > 0 and an m-generated convex set Am, define

Am,ε =
⋂

v∈V(Am)

{w ∈ Rp : w′b ≤ SAm(v) + ε}

Say that a convex set A admits an approximation with precision ε by an m-generated convex set Am if
Am ⊂ A ⊂ Am,ε.

1A closed half space in Rp is one defined by the inequality a1x1 + . . . apxp ≥ b, where at least on of the ai above is non-zero.
In an open half-space the inequality is strict.

28



4 Central Limit Theorems and Bootstrap in High Dimensions Victor Chernozhukov, Denis Chetverikov,

Kengo Kato (AoP 2017)

Let a, d > 0 be some constants and let Asi(a, d) be the class of all Borel sets A ⊂ RP such that A admits an
approximation with precision ε = a/n by an m-generated convex set Am where m ≤ (pn)d.

Refer to sets that satisfy the condition above as simple convex sets. note that any hyperrectangle A ∈ Are

is a simple convex set with a = 0, d = 1. For any A ∈ Asi(a, d), let Am(A) denote the approximating
m-polytope.

Proposition will consider subclasses A of the class Asi(a, d) consisting of sets A such that for Am = Am(A)
and X̃i = (X̃i1, . . . , X̃im)′ = (v′Xi)v∈V(Am) the following conditions are satisfied:

1. (M.1′) n−1
∑n
i=1 E[X̃2

ij ] ≥ b for all j = 1, . . . ,m

2. (M.2′)n−1
∑n
i=1 E[|X̃ij |2+k] ≤ Bkn for all j = 1, . . . ,m and k = 1, 2

and, in addition, one of the following conditions is satisfied

1. (E.1′) E[exp(|X̃ij |/Bn])] ≤ 2 for i = 1, . . . , n and j = 1, . . . ,m

2. (E.2′) E[(max1≤j≤m|X̃ij |/Bn)q] ≤ 2 for all i = 1, . . . , n

Define the following

D(1)
n =

(
B2
n log7(pn)

n

)1/6

, D(2)
n,q =

(
B2
n log3(pn)

n1−2/q

)1/3

(9)

This leads to the following proposition

Proposition 1 (High-dimensional CLT for simple convex sets). Let A be a subclass of Asi(a, d) such that
conditions (M.1′), (M.2′), and (E.1′). Then

ρn(A) ≤ CD(1)
n , (10)

where the constant C depends only on b, while if (E.2′) is satisfied for every A ∈ A, then

ρn(A) ≤ C{D(1)
n +D(2)

n,q} (11)

where the constant C depends only on a, b, d, and q

Worthwhile to mention that a sufficient condition for the transformed variables X̃i = (v′Xi)v∈V(Am) satisfying
condition (E.1′) is the case where each Xi obeys a log-concave distribution. A Borel probability measure µ
on Rp is log-concave if for any compact sets A1, A2 in Rp and λ ∈ (0, 1),

µ(λA1 + (1− λ)A2) ≥ µ(A1)λµ(A2)1−λ

where xA1 + yA2 = {xa1 + ya2 : ai ∈ Ai}.

Corollary 1 (High-dimensional CLT for simple convex sets with log-concave distributions). Suppose that
each Xi obeys a centered log-concave distribution on Rp and that all the eigenvalues of E[XiX

′
i] are bounded

from below by a constant k1 > 0 and from above by a constant k2 ≥ k1 for every i = 1, . . . , n. Then

ρn

(
Asi(a, d)

)
≤ C−1/6n log7/6(pn)

where the constants Cn depend only on a, b, d, k1 and k2.
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4.3.2 Sparsely Convex Sets

Definition 1 (Sparsely Convex Sets). For integers s > 0, we say that A ⊂ Rp is an s-sparsely convex set if

there exists an integer Q > 0 and convex sets Aq ⊂ Rp, q = 1, . . . , Q such that A = ∩Qq=1Aq and the indicator
function of each Aq, w 7→ 1(q ∈ Aq) depends on at most s elements of its arguments q = (q1, . . . , wp). Also

say that A = ∩Qq=1Aq is a sparse representation of A.

Observe that for any s-sparsely convex set A ⊂ Rp, the integer Q in Definition 1 can be chose to satisfy
Q ≤ Cps ≤ ps, where Cp2 is the number of combinations of size s from p objects. Indeed, if we have a sparse

representation A = ∩Qq=1Aq for Q > Cps .

The proof of the proposition below reveals that s-sparsely convex sets are closely related to simple convex
sets. In particular, can split any s-sparsely convex set A ⊂ Rp into A ∩B and A ∩B′ for a cube B = {w ∈
Rp : max1≤j≤p|wj |≤ R}.
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5 Sparse Principal Component Analysis Hui Zou, Trevor Hastie, Robert Tisbirani (JCGS,

2006)

Paper appeared in Journal of Computational and Graphical Statistics in 2006. Extends PCA to the high
dimensional setting so there is consistency when p� n.

5.1 Introduction

Principal Component Analysis is a popular data-processing and dimension reduction technique, with many
applications in engineering, biology, and social science. PCA seeks the linear combinations of the original
variables such that the derived variables capture maximal variance. It can be computed via the singular
value decomposition (SVD) of the data matrix.

In detail, let the data X be an n× p matrix, where n and p are the number of observations and the number
of variables, respectively. Without loss of generality, assume the column means of X are all zero and let the
SVD of X be

X = UDVT (1)

where Z = UD are the principle components and the columns V are the corresponding loadings of the
principal components. The sample variance of the ith PC is D2

ii/n. In gene expression data the standardized
PCs U are called the eigen-arrays and V are called the eigen-genes. Usually the first q, q � min(n, p),
principal components are used to represent that data, and so a dimensionality reduction is achieved.

Success of PCA is due to the following important properties:

1. Principal components sequentially capture the maximum variability among the columns of X, guar-
enteeing minimal information loss.

2. Principal components are uncorrelated, so we can talk about one principal component without referring
to others

However, PCA also has an obvious drawback, that is, each PC is a linear combination of p variables and the
loadings are typically non-zero. This makes it difficult to interpret the derived PCs. Rotation techniques
are commonly used to help practitioners interpret the derived PCs, Joliffe (1995). Vines (2000) considered
simple principal components by restricting the loadings to take values from a small set of allowable integers
such as 0, 1, and −1.

Feel it is desirable not only to achieve the dimensionality reduction, but also reduce the number of explicitly
used variables. Ad-hoc way to achieve this is to artificially set the loadings with absolute values smaller than
a threshold to zero. The same interpretation issues arise in multiple linear regression, where the response is
predicted by a linear combination of the predictors in lasso.

This article introduces a new approach for estimating PCs with sparse loading, which we call sparse principal
component analysis. SPCA is built on the fact that a PCA can be written as a regression-type optimization
problem.

5.2 Motivation and Details of SPCA

In both lasso and elastic net, the sparse coefficients are a direct consequence of the L1 penalty, and do not
depend on the square error loss function. Jolliffe, Trendafilov, and Uddin (2003) proposed SCoTLASS, an
interesting procedure that obtains sparse loadings by directly imposting an L1 constraint on PCA. SCoTLASS
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successively maximizes the variance

max aTk (XTX)ak (2)

subject to aTk ak = 1

aTh ak = 0 for k ≥ 2 and h < k

(3)

and the extra constraint

p∑
j=1

|akj |≤ t (4)

For some tuning parameter t. Although a sufficiently small t yields some exact zero loadings, there is not
much guidance with SCoTLASS in choosing an appropriate value for t. One could try several t values, but
the high computational cost of SCoTLASS makes this an impractical solution. Instead consider a different
approach to modifying PCA. First show how PCA can be recast in terms of a ridge-regression problem.
Then the lasso penalty by changing this ridge regression to an elastic-net regression.

5.2.1 Direct Sparse Approximation

First discuss a simple regression approach to PCA. Observe that each PC is a linear combination of the p
variables, thus its loadings can be recovered by regressing the PC on the p variables.

Theorem 1. For each i denote by Zi = UiDii the ith principal component. Consider a positive λ and the
ridge estimates β̂ridge given by

β̂ridge = arg minβ‖Zi −Xβ‖2+λ‖β‖2 (5)

Let v̂ :=
β̂ridge

‖β̂ridge‖
. The v̂ = Vi.

Theorem 1 shows the connection between PCA and a regression methods. Regressing PCs on variables was
discussing in Cadima and Jolliffe (1995) where they focused on approximating PCs by a subset of k variables.

This is extended to a more general case of ridge regression in order to handle all kinds of data, especially gene
expression data. Obviously, when n > p and X is a full rank matrix, the theorem does not require a positive
λ. Note that if p > n and λ = 0 =, ordinary multiple regression has no unique solution that is exactly Vi.
The same happens here when n > p and X is not a full rank matrix. However, PCA always gives a unique
solution in all situations. As shown in Theorem 1, this indeterminacy is eliminated by the positive ridge
penalty. Note that, after normalization, the coefficients are independent of λ, therefore the ridge penalty is
not used to penalize the regression coefficients but to ensure the reconstruction of the principal components.

No add the L1 penalty to 5 and consider the following optimization problem

β̂ = arg minβ‖Zi −Xβ‖2+λ‖β‖2+λ1‖β‖1 (6)

Call V̂i = β̂

‖β̂‖
an approximation to Vi and XV̂i the ith approximated principal component. Zou and Hastie

(2005) called (6) a naive elastic net, which differs from the elastic net by a scaling factor (1 + λ). Since
we are using the normalized fitted coefficients, the scaling factor does not affect V̂i. Clearly, large enough
λ1 gives sparse β̂ and hence a sparse V̂i. So can flexible choose a sparse approximation to the ith principal
component.

5.2.2 Sparse Principal Components Based on the SPCA Criterion

Theorem 1 depends on the results of PCA, so it is not a genuine alternative. However, it can be used in a
two-stage exploratory analysis. First, perform PCA then use (3.5) to find suitable sparse approximations.

Now present a “self-contained” regression-type criterion to derive PCs. Let xi denote the ith row vector of
the matrix X. First consider the leading principal component.
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Theorem 2. For any λ > 0, let

(α̂, β̂) = arg min
α,β

n∑
i=1

‖xi − αβTxi‖2+λ‖β‖2 (7)

subject to ‖α‖2 = 1

Then β̂ is proportional to V1 (β̂ ∝ V1).

Next theorem can be used to derive the whole sequence of PCs

Theorem 3. Suppose we are considering the first k principal components. Let Ap×k = [α1, . . . , αk] and
Bp×k = [β1, . . . , βk]. For any λ > 0, let

(Â, B̂) = arg min
A,B

n∑
i=1

‖xi −ABTxi‖2+λ‖β‖2 (8)

subject to ATA = Ik×k

Then β̂j is proportional to Vj for all j = 1, 2, . . . , k (∀j, β̂j ∝ Vj).

Theorems 2 and 3 effectively transform the PCA problem into a regression-type problem. The critical
element is the objective function

∑n
i=1‖xi −ABTxi‖2. If we restrict B = A, then

n∑
i=1

‖xi −ABTxi‖2=

n∑
i=1

‖xi −AATxi‖2

whose minimizer under the orthonormal constraint on A is exactly the first k loading vectors of ordinary
PCA. This formulation arises int he “closest approximating linear manifold” derivation of PCA (Hastie,
Tibshirani, Friedman 2001). Theorem 3 shows that we can still have exact PCA while relaxing the restriction
that B = A and adding the ridge penalty term.

As can be seen later, these generalizations enable us to flexibly modify PCA. The proofs of Theorems 2 and
3 are given in Appendix, below is an intuitive explanation.

Note that
n∑
i=1

‖xi −ABTxi‖2= ‖X−XBAT ‖2 (9)

Since A is orthonormal, let A⊥ be any orthonormal matrix such that [A; A⊥] is a p× p orthonormal. Then,
we have

‖XT −XBAT ‖2 = ‖XA⊥‖2+‖XA−XB‖2 (10)

= ‖XA‖2+

k∑
j=1

‖Xαj −Xβj‖2 (11)

Suppose A is given, then the optimal B minimizing (8) should minimize

arg minB

k∑
j=1

{
‖Xαj −Xβj‖2+λ‖βj‖2

}
(12)
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Full paper title is “Deep IV: A Flexible Approach for Counterfactual Prediction.” Paper provides a recipe
for augmenting deep learning methods to accurately estimate these relationships and can be found here.

6.1 Introduction

Supervised machine learning (ML) provides effective methods for tasks in which a model is learned based on
samples collected from some DGP. Generally, this model is then used to make predictions about new samples
from the same distribution. However, decision makers often would like to predict the effects of interventions
into the DGP through policy changes. The rest of this assumption just explains what IV is.

6.2 Counterfactual Prediction

Aim to predict the value of some outcome variable y under an intervention in a policy or treatment variable
p. There exists a set of observable covariate features x, that we know affect both p and the outcome y. Also
exist unobservable latent variables e that may affect x, p, and y. Assume that the structural relationship
E[y|do(p), x] has the additively separable form

y = g(p, x) + e (1)

That is, g(·) is some unknown and potentially non-linear continuous function of both x and p, and we assume
that the latent variables (or “error”) e, enters additively with unconditional mean E[e] = 0. Allow for errors
that are potentially correlated with the inputs E[e|x, p] 6= 0 and, in particular, E[pe|x] 6= 0.

Define the counterfactual prediction function

h(p, x) ≡ g(p, x) + E[e|x] (2)

which is the conditional expectation of y given the observables p and x, holding the distribution of e constant
as p is changed. This explains the lack of conditioning on p in E[e|x]. So h(p, x) is the target structural
equation this paper is concerned with estimating. Useful because we can look at differences in outcomes
h(p1, x)− h(p0, x) = g(p1, x)− g(p0, x).

In standard supervised learning settings, the prediction model is trained to fit E[y|p, x]. This will typically
be biased against the structural equation in (2) because

E[y|p, x] = g(p, x) + E[e|p, x] 6= h(p, x) (3)

This is the “endogeneity problem.” The presence of instruments allows for the resolution of this problem. A
valid instrument z satisfies by the following conditions:

Assumption 1 (Instrument Validity). A valid instrument satisfies the following conditions:
1. Relevance F (p|x, z), the distribution of p given x and z is not constant in z.
2. Exclusion z does not enter equation (1)-i.e z ⊥ (x, p, e).a

3. Unconfounded Instrument z is conditionally independent of the error-i.e z ⊥ e|xb

aThis means that z does not directly affect y.
bCould replace this with the assumption E[e|p, x] ≡ 0.

Under these assumptions, taking the expectation of both sides of (1) conditional on x and z yields

E[y|x, z] = E[g(p, x)|x, z] + E[e|x]

=

∫
g(p, x)dF (p|x, z)

(4)

The relationship in (4) defines an inverse problem for h in terms of two observable functions, E[y|x, z] and
F (p|x, z). IV analysis typically splits this into two stages: first estimating F̂ (p|xt, zt) ≈ F (p|xt, zt), and then
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estimating ĥ after plugging in F̂ .

Most existing IV approaches assume linear models for the treatment density function F̂ and the counterfac-
tual prediction function ĥ to solve (4) in closed form, i.e 2SLS of IA (1994, 1996). Flexible nonparametric
extensions of 2SLS replace the linear regressions with a linear projection onto a series of known basis func-
tions, or use kernel-based methods. This system of series estimators is an effective strategy for introducing
flexibility and heterogeneity with low dimensional inputs, but the approach faces the same limitations as ker-
nel methods in general: their performance depends on the choice of kernel function; and they often become
computationally intractable in high dimensional feature spaces [x, z] or with a large number of samples.

6.3 Estimating and Validating DeepIV

Now describe how one can use deep networks to perform flexible, scalable, IV analysis in a framework called
DeepIV. Make two contributions that are necessary components of the approach. First, propose a loss
function and optimization procedure that allows for the optimization of deep networks for counterfactual
prediction. Second, describe a general procedure for out-of-sample validation of two-stage IV methods. This
allows for hyper-parameter tuning, which is necessary for achieving good predictive performance using deep
networks.

Approach is conceptually simple given the counterfactual prediction framework describes in the previous
section. Rather than constraining to analytic solutions to the integral in (4), instead directly optimize the

estimate of the structural equation, ĥ. Specifically, to minimize the `2 loss given n data points and given
function space H solve

min
ĥ∈H

n∑
t=1

(
yt −

∫
ĥ(p, xt)dF (p|xt, zt)

)2

(5)

Since the treatment distribution is unknown, estimate F̂ (p|x, z) in a separate, first stage.1

So DeepIV procedure has two stages; a first stage density estimation procedure to estimate F̂ (p|x, z) and a
second procedure that optimizes the loss function described in Equation (5).

First Stage: Treatment Network In the first stage estimate F̂ (p|x, z) using an appropriately chosen
distribution chosen by a deep neural network (DNN) say F̂ = Fφ(p|x, z) where φ is the set of network
parameters. Since the second stage involves integrating over Fφ, must fully specify this distribution.

In the case of discrete p, model Fφ(p|x, z) as a categorical DNN given with a softmax2 output. For contin-
uous treatment, model F as a mixture of Gaussian distributions, where component weights πk(x, z, ; θ) and
parameters [µk(x, z;φ), σk(x, z;φ)] form the final layer of a neural network parameterized by φ. This model
is known as a mixture density network, as detailed in Bishop (2006).

Second Stage: Outcome Network In the second stage, the counterfactual prediction function h is
approximated by a DNN with a real valued output, say hθ. Optimize the network parameters θ to minimize
the integral loss function in (5) over training data D of size T = |D| from the joint DGP D,

L(D; θ) = |D|−1
∑
t

(
yt −

∫
hθ(p, xt)dF̂φ(p|xt, zt)

)2

(6)

6.3.1 Optimization for DeepIV Networks

Use stochastic gradient descent to train the network weights. For the first stage, Fφ, standard off the shelf
methods apply, but for the second stage one needs to account for the integral in (6). Can approximate the
integral with respect to a probability measure with the average of draws from the associated probability

1In this way, we can think of the first stage estimation of F̂ (p|x, z) as a nuisance parameter that has to be estimated prior.
2smooth approximation to the arg max function
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distribution:
∫
h(p)dFP (p) ≈

∑
B−1

∑
b h(pb) for pb

iid∼ F . So can get an unbiased estimate of (6) by

replacing the integral with a sum over samples from fitted treatment distribution function F̂φ:

L(D; θ) ≈ L̂(D; θ) := |D|−1
∑
t

yt − 1

B

∑
ṗ
∑
F̂φ(p|x1,zt)

hθ(ṗ, xt)


2

(7)

Equation above can be used to estimate ∇θL with a caveat, if one wants to maintain unbiased gradient
estimates, independent samples must be used for each instance of the integral in the gradient calculation.
To see this, note that the gradient of (7) has expectation

ED [∇θLt] = −2ED
[
EFφ(p|xt,zt)

[
yt − hθ(pk, xt)

]
· EFφ(p|xt,zt)

[
h′θ(p

k, xt)
]]

6= −2ED

[
EFφ(p|xt,zt)

[(
yt − hθ(pk, xt)

)
h′θ(p

k, xt)

]] (8)

The above is contains a law of iterated expectations written in some different notation.
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Full paper title is “Estimation and Inference of Heterogeneous Treatment Effects using Random Forests.”
The article appeared in the Journal of the American Statistical Association in June 2018. It can be found
on the JASA website here.

7.1 Introduction

In many applications, want to use data to draw inferences about the causal effect of a treatment. Examples
include medical studies about the effect of a druf on health outcomes, studies of the impact of advertising or
marketing offers on consumer purchases, evaluations of the effectiveness of government programs or public
policies. Historically, most datasets have been too small to meaningfully explore heterogeneity of treatment
effects beyond dividing the sample into a few subgroups. Recently, however, there has been an explosion of
empirical setting where it is potentially feasible to cutomize estimates for individuals.

An impediment to exploring heterogeneous treatment effects is the fear that researchers will iteratively search
for subgroups with treatment effects. Paper develops a nonparametrics approach to do this.

7.2 Causal Forests

7.2.1 Treatment Estimation with Unconfoundedness

Suppose we have access to n i.i.d training examples labeled i = 1, . . . , n, each of which consists of a feature
vector Xi ∈ [0, 1]d, a response Yi ∈ R, and a treatment indicator Wi ∈ {0, 1}. Following the potential
outcomes framework of Neyman (1923) and Rubin (1974), then posit the existence of potential outcomes

Y
(1)
i and Y

(0)
i . Define the treatment effect at x as

τ(x) = E[Y
(1)
i − Y (0)

i |Xi = x] (1)

Goal is to estimate the function τ(x). The main difficulty is that we can only ever observe one of the two

potential outcomes Y
(0)
i and Y

(1)
i for any individual and so cannot directly train ML model on the difference.

In general, cannot estimate τ(x) directly from the observed data (Xi, Yi,Wi) without further restrictions on
the Data Generating Process. A standard way to make progress is to make an unconfoundedness assumption.
This is stated formally {

Y
(0)
i , Y

(1)
i

}
⊥Wi | Xi;

1 (2)

Motivation behind unconfoundedness is that, given continuity assumptions, it effectively implies that one can
treat nearby observations in x-space as having come from a randomized experiment. Thus, nearest-neighbor
matching and other local methods will, in general, be consistent for τ(x).

1Some helpful definitions are provided here

Definition (Independence). Let (Ω,F ,P) be a probability space. Then, sub-σ-fields G1, . . . ,Gn ⊂ F are said to be independent
if

P(G1 · · · . . . ·Gn) = P(G1) · . . .P(Gn), ∀Gi ∈ Gi, i = 1, . . . , n

An infinite collection of sub sigma fields is said to be independent if each finite collection is independent.

Definition (Conditional Probability Distribution). Let T be an F \ B measurable map from a probability space (Ω,F ,P) into
a measurable space (T ,B). Let Q equal TP, the distribution of T under P. Call a family P = {Pt : t ∈ T } of probability
measures on F the conditional probability distribution of P given T if

1. Pt{T 6= t} = 0 for Q-almost all t ∈ T .

2. The map t 7→ Pωt f(ω) is B-measurable and Pωf(ω) = QtPωt f(ω), for each f ∈M+(Ω,F), the set of all positive measurable
functions.
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An immediate consequence of unconfoundedness is that

E

[
Yi

(
Wi

e(x)
− 1−Wi

1− e(x)

)
| Xi = x

]
= τ(x), where e(x) = E[Wi|Xi = x] 2 (3)

Many early applications of ML to causal inference effectively reduced to estimating e(x) and plugging into
(3) above. This paper takes a more indirect approach: show that, under regularity assumptions, causal
forests can use (2) to achieve consistency without needing to explicitly estimate the propensity e(x).

7.2.2 From Regression Trees to Causal Forests

At a high level, trees and forests can be thought of as nearest neighbor methods with an adaptive neighbor-
hood metric. Advantage of trees is that leaves can be narrower along the directions in which the signal is
changing fast and wider along the other directions.

This section seeks to build causal trees that resemble their regression analogues as closely as possilbe. Suppose
first that we only observe independent samples (Xi, Yi) and want to build a CART regression tree. Start
by recursively splitting the feature space until have partitioned it into a set of leaves L, each of which only
contains a few training samples. Then, given a test point x, evaluate the prediction µ̂(x) by identifying the
leaf L(x) containing x and setting

µ̂(x) =
1

|{i : Xi ∈ L(x)}|
∑

{i:Xi∈L(x)}

Yi (4)

That is, just setting µ̂(x) to be the average inside the leaf containing x. Heuristically, this strategy is well
motivated if the leaf L(x) is small enough if the responses inside the leaf are roughly identically distributed.
In the context of causal trees, analagously want to thing of the leaves as small enough that the (Yi,Wi)
pairs corresponding to the indices i for which i ∈ L(x) act as though they had come from a randomized
experiment.

In the context of causal trees, analogously want to think of the leaves as small enough that the (Yi,Wi)
pairs corresponding to the indices i for which i ∈ L(x) act as though they had come from a randomized
experiment. Then it is natural to estimate the treatment effect for any x ∈ L as

τ̂(x) =
1

|{i : Wi = 1, Xi ∈ L}|
∑

i:Wi=1,Xi∈L
Yi −

1

|{i : Wi = 0, Xi ∈ L}|
∑

i:Wi=0,Xi∈L
Yi

3 (5)

Maybe the advantage is consolidating for inference?

7.2.3 Asymptotic Inference with Causal Forests

Results require some conditions on the forest-growing scheme. The trees used to build the forest must be
grown on subsamples of the training data, and the splitting rule must not “inappropriately” incorporate
information about the outcomes Yi as discussed formally below. However, given these high level conditions,
obtain a widely applicable consistency result.

First result is that the causal forests are consistent for the true treatment effect τ(x). To achieve pointwise
consistency, need to assume that the conditional mean functions E[Y (0)|X = x] and E[Y (1)|X = x] are both
Lipschitz continuous. This assumption is fairly standard in the literature. Also impose common support,
∃ε > 0 :

ε < P[W = 1|X = x] < 1− ε (6)

Beyond consistency, in order to do statistical inference on the basis of the estimated treatment effects τ(x),

2This is the propensity score design
3Question: Why bother having one regression tree for both Y (1) and Y (0)? This assumes that the heterogeneity is the

same. It seems like we’d get better predictive results just doing two seperate regression trees.
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need to do inference. Paper shows that,(
τ̂(x)− τ(x)

)
/
√

Var[τ̂(x)] N(0, 1) (7)

Under the conditions required for consistency, provided the subsample size s scales with nβ for some βmin <
β < 1.

Moreover, show that the asymptotic variance of causal forests can be accurately estimated. To do so, use
the infinitesimal jackknife for random forests by Efron (2014) and Wager et al. (2014). Method assumes
that we have taken the number of trees B to be large enough that the Monte Carlo variability of the forest
does not matter, and only measures the randomness in τ̂(x) due to the training sample.

7.2.4 Honest Trees and Forests

In our discussion so far, have emphasized the flexible nature of results. For a wide variety of causal forests
that can be tailored to the application area, achieve both consistency and centered asymptotic normality,
provided the sub-sample size s scales at an appropriate rate. Results require that individual trees satisfy a
fairly strong condition: honesty. A tree is honest if, for each training example i, it only uses the response Yi
to estimate the within-leaf treatment effect τ using (5) or to decide where to place the splits, but not both.
Paper discusses two causal forest algorithms that satisfy this condition.

First algorithm, called double-sample tree, achieves honesty by dividing its training subsample into two
halves I and J . Then, uses the J -sample to place the splits while holding out the I-sample to do within-
leaf estimation. Re-randomize I \ J splits over each subsample so that, although no one data point can be
used for split selection and leaf estimation in a single tree, each data point will participate in both I and
J sample of some trees. Initial objective was to reduce bias, but find that double-sample trees can improve
MSE as well.

Another way to build honest trees is to ignore the outcome data Yi when placing splits and instead first
train a classification tree for the treatment assignments Wi. Such propensity trees can be particularly useful
in observational studies where want to minimize bias due to variation in e(x).
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This paper can be found at the following stable JSTOR link. It appeared in the Indian Journal of Statistics
in 1979.

8.1 General Idea of C-alpha Tests

Consider a sequence of independent and identically distributed random variables Xn(ξ, θ), possible vectors
with density Xn(ξ, θ) ∼ p(x|ξ, θ) depending on two parameters: ξ–scalar and θ–possibly a vector of size
x ≥ 1. We are only interested in testing the hypothesis: H0 : ξ = 0, the parameter θ is a nuisance parameter.

Assume that θ ∈ Θ ∈ τ , that is Θ is an open set. The following discussion presupposes certain properties of
regularity of p(x|ξ, θ), enough that you can take derivatives and second derivatives under the integral. The
sample space of X is denoted W .

In order to define a test of class C(α), consider an arbitrarily measurable function f(x) defined for all x ∈W
and that for ξ = 0 the random variable f [X(0, θ)] has finite variance σ2(θ). Let f1(θ) be the expectation of
f [X(0, θ)]. Then, by CLT the function

Zn(θ) =
1√
n

n∑
i=1

f [Xi(0, θ)]− f1(θ)

σ(θ)
 N(0, 1) (1)

So for large n, if we knew θ, we could use the test statistic Zn(θ), comparing this to quantiles of the Normal
distribution to get rejection regions. The problem is that we have to estimate θ. So the question becomes:
what is the asymptotic distribution of Zn(θ̂).

Impose the limitation that θ̂ is “locally-
√
n consistent”. That is, for each possible ξ:

√
n
∣∣∣θ̂ − θ −Aξ∣∣∣ = Op(1) (2)

where A ∈ R is just a constant and Aξ is the bias in the estimate of θ̂. If A = 0, there is no bias and the
estimator θ̂ is labelled “consistent in the large”, otherwise it is only “locally” consistent.

In the case that ξ = 0, one of the basic theorems of Neyman (1959) indicates that for Zn(θ̂) to have the
same asymptotic distribution of Zn(θ) it is necessary and sufficient that the function f be orthogonal to all
the logarithmic derivatives. That is

φj(x, θ) =
∂ log p

∂θj
|ξ=0 (3)

Starting with an arbitrary function f , it is easy to replace it by one orthogonal to the φj , name

g(x, θ) = f(x, θ)−
s∑
j=1

αjφj(x, θ) (4)

where f(x, θ) = f(x)− f1(x) and aj are solutions of a system of a system of linear equations and represent
partial regression coeffecients of f [X(0, θ)− g1(θ)] on φ1, φ2, . . . , φs

Dividing (4) by the square root of this variance, obtain the “normed” form of g, say g∗(x, θ). This is now
inserted into formula (4)
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